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1. Implementation Details

The baselines selected for our experiments all have corre-
sponding official code releases. We use the released code
and run each model on our GPUs, following the official
training scripts and settings. Additionally, we use the more
challenging dynamic SDSD dataset for the SNR method,
while other methods utilize the corresponding static ver-
sions. In the ablation study, the training settings are main-
tained as “Original” across all ablation configurations.

In different experiments, we apply loss weights to bal-
ance the contributions of the two terms in Eq. 9.

The structure of SU and MU are both a stack of convo-
lution layers. If we adopt seven layers, the structure of SU
can be summarized in Tables. 1 and 2, and the architecture
of MU can be presented in Tables. 3 and 4. The correspond-
ing graphical diagram of the model architecture is shown in
Fig. 1. Moreover, the identity embedding in LFPVs is im-
plemented by nn.Embedding in Pytorch.

The training procedure is summarized in Alg. 1.

Layer Type Norm Activation Kernel Stride Padding Output Size
Input Feature - - - - - 1× 1× 3c
Convolution BN LeakyReLU 1 1 0 1× 1× 4c
Convolution BN LeakyReLU 1 1 0 1× 1× 4c
Convolution BN LeakyReLU 1 1 0 1× 1× 4c
Convolution BN LeakyReLU 1 1 0 1× 1× 4c
Convolution BN LeakyReLU 1 1 0 1× 1× 4c
Convolution BN LeakyReLU 1 1 0 1× 1× c
Convolution - - 1 1 0 1× 1× c

Table 1. Architecture of SU with seven layers for the vector part,
where “c” is the channel number.

Layer Type Norm Activation Kernel Stride Padding Output Size
Input Feature - - - - - k × k × 3c
Convolution BN LeakyReLU 3 1 1 k × k × 4c
Convolution BN LeakyReLU 3 1 1 k × k × 4c
Convolution BN LeakyReLU 3 1 1 k × k × 4c
Convolution BN LeakyReLU 3 1 1 k × k × 4c
Convolution BN LeakyReLU 3 1 1 k × k × 4c
Convolution BN LeakyReLU 3 1 1 k × k × c
Convolution - - 3 1 1 k × k × c

Table 2. Architecture of SU with seven layers for the patch part,
where “c” is the channel number.

2. More Ablation Studies

Comparison with other strategies that prioritize hard
samples. Some previous works in other tasks, such as im-
age classification, have also adopted techniques that prior-
itize hard samples, including online hard example mining

Layer Type Norm Activation Kernel Stride Padding Output Size
Input Feature - - - - - 1× 1× 4c
Convolution BN LeakyReLU 1 1 0 1× 1× 4c
Convolution BN LeakyReLU 1 1 0 1× 1× 4c
Convolution BN LeakyReLU 1 1 0 1× 1× 4c
Convolution BN LeakyReLU 1 1 0 1× 1× 4c
Convolution BN LeakyReLU 1 1 0 1× 1× 4c
Convolution BN LeakyReLU 1 1 0 1× 1× c
Convolution - - 1 1 0 1× 1× c

Table 3. Architecture of MU with seven layers for the vector part,
where “c” is the channel number.

Layer Type Norm Activation Kernel Stride Padding Output Size
Input Feature - - - - - k × k × 4c
Convolution BN LeakyReLU 3 1 1 k × k × 4c
Convolution BN LeakyReLU 3 1 1 k × k × 4c
Convolution BN LeakyReLU 3 1 1 k × k × 4c
Convolution BN LeakyReLU 3 1 1 k × k × 4c
Convolution BN LeakyReLU 3 1 1 k × k × 4c
Convolution BN LeakyReLU 3 1 1 k × k × c
Convolution - - 3 1 1 k × k × c

Table 4. Architecture of MU with seven layers for the patch part,
where “c” is the channel number.

Algorithm 1 Our training strategy to improve the perfor-
mance of the target network F with LFPVs
Parameter: Training data (Id, In), initialized F , maxi-
mum number of iteration Tmax, number of iteration T ← 0

1: while T ̸= Tmax do
2: Read batch Db = {I1

d, ..., I
b
d}, Y b = {I1

n, ..., I
b
n}.

3: Extract the feature of Db as {f1
d, ...,f

b
d}.

4: Randomly sampling feature vectors and patches as
fd(xi, yi) and fpd

(xi, yi) from {f1
d, ...,f

b
d}, and up-

date Cv and Cp with Eq. 2 and Eq. 3.
5: Use the mutual-updater to update the value of Cv

and Cp with Eq. 4.
6: Update the original features {f1

d, ...,f
b
d} to

{f ′1
d, ...,f

′b
d} with Eqs. 6, 7, and 8.

7: Forward {f1
d, ...,f

b
d} and {f ′1

d, ...,f
′b
d} to the

decoder as the output images as {Î
1

n, ..., Î
b

n} and
{Ī1

n, ..., Ī
b
n}, respectively

8: Compute L with Eq. 9 to update target network F .
9: T ← T + 1.

10: end while

(OHEM) and focal loss [1]. In this section, we conduct
experiments to compare our strategy with these methods.
For OHEM, we use the distance to the ground truth as a
metric to measure sample difficulty. The results are pre-
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Figure 1. The graphical diagrams of different models in our framework are illustrated, including SU and MU modules for both the vector
and patch parts. The notation “Convolution(K=k, S=s, P=p, i → j)” denotes a convolutional layer with kernel size k, stride s, padding p,
and channel dimensions changing from i (input) to j (output).

Methods
SID SMID SDSD-Indoor SDSD-Outdoor

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
R.M. 22.27 0.649 26.97 0.758 25.67 0.827 24.79 0.802
R.M.+OHEM 22.41 0.652 27.25 0.760 25.98 0.831 25.06 0.807
R.M.+Focal 22.63 0.657 27.58 0.764 26.19 0.835 25.70 0.801
R.M.+Ours 23.60 0.664 28.63 0.775 27.06 0.846 26.77 0.814

Table 5. Ablation study results on different datasets using various
methods that prioritize hard samples. “R.M.” denotes Restormer.

sented in Table 5, where “OHEM” refers to online hard ex-
ample mining, and “Focal” denotes the use of focal loss. We
train multiple hyperparameter configurations and report the
best results. As shown in Table 5, our method consistently
outperforms both baselines. This may be because OHEM
and focal loss mainly focus on suppressing hard samples,
whereas our approach goes a step further by leveraging LF-
PVs to actively assist in recovering remaining hard samples.

Cross-dataset validation. We conduct experiments to val-
idate the generalization ability and adaptability of LFPVs.
To this, we conducted cross-dataset experiments by apply-
ing LFPVs learned on SID to LOL. As shown in Table 6,
we observe a degradation, since LFPVs are correlated with
the ground truth features of Dn, which differs between SID
and LOL. However, it’s still better than the baseline, as
both datasets’ ground truths consist of normal-light images
from diverse scenes. Thus, although LFPVs are static dur-
ing inference, they demonstrate adaptability and generaliza-
tion since principles shared across datasets when collecting
normal-light images. We recommend employing LFPVs
with datasets containing varied scenarios in practice.

Methods SNR +LFPVs +LFPVs (C.D.) +LFPVs (O.L.E.P)
PSNR 21.48 24.38 22.55 23.04
SSIM 0.849 0.864 0.852 0.857

Table 6. Ablation study results. “C.D.”: cross-dataset setting;
“O.L.E.P.”: training with only the loss on LFPVs enhanced path.

Train with L(Īn, In) only. In the original implementation,
the loss function is defined as a combination of two terms:
(1) L(În, In) and (2) L(Īn, In). To validate the necessity
of combining both terms, we conduct an ablation study by
training models using only the second loss term. The re-
sults are lower than the original LFPVs implementation but
higher than the baseline (as shown in Table 6). This may
be because removing the first loss term prevents full fitting
of some Df samples, making them resemble Dn and thus
learned by LFPVs. As a result, LFPVs may need to learn
more samples besides Dn, increasing its learning difficulty.

More ablation study results for Sec. 4.3. In Sec. 4.3 of
the main paper, we have conducted ablation studies. We
provide more experimental results with anther LLIE base-
line in this section. The results are shown in Table 7 which
also support the conclusion in the main paper.

3. Limitations

In this work, we introduce a novel strategy for formulat-
ing LFPVs, which serve as effective references to enhance
LLIE methods. While this approach adds computational
overhead during inference, we plan to further optimize for



Method
SID SMID SDSD-Indoor SDSD-Outdoor

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
[2] 22.27 0.649 26.97 0.758 25.67 0.827 24.79 0.802
[2]+wo SU 22.88 0.655 27.18 0.760 26.04 0.830 25.52 0.791
[2]+wo MU 22.85 0.658 27.23 0.769 26.63 0.836 26.08 0.804
[2]+wo Pos 23.04 0.657 28.02 0.765 26.88 0.833 26.63 0.797
[2]+Hard 23.15 0.661 27.79 0.769 27.29 0.852 26.70 0.816
[2]+LFPV-D. 22.76 0.650 27.91 0.767 26.57 0.826 25.89 0.800
[2]+8LFPV 22.73 0.662 28.14 0.772 26.90 0.842 26.03 0.809
[2]+32LFPV 23.76 0.667 28.82 0.783 27.31 0.859 26.82 0.820
[2]+LSUMU 24.00 0.675 28.93 0.787 27.46 0.855 26.95 0.824
[2]+Patch8 23.37 0.656 28.86 0.789 27.11 0.851 26.86 0.819
[2]+Patch16 23.16 0.653 28.39 0.767 27.48 0.854 26.88 0.822
[2]+Order 24.14 0.678 28.95 0.787 27.13 0.856 26.90 0.823
[2]+LSTM 24.36 0.681 29.15 0.790 27.91 0.868 27.08 0.826
[2]+Original 23.60 0.664 28.63 0.775 27.06 0.846 26.77 0.814

Table 7. Results of ablation studies on different datasets with dis-
tinct networks. The best and second best scores are highlighted.
R.M. denotes Restormer.

efficiency. Additionally, our LFPVs currently rely solely on
the information of datasets, without incorporating domain
knowledge. Future improvements could include automati-
cally tuning LFPVs parameters for specific scenarios or in-
tegrating external knowledge with the aid of large models.
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