A. Appendix
A.1. Simplified Code

We provide a simplified version of the codebase for as-
sessing the efficacy of MergeOcc, which is accessible in
https://github.com/Easonxu-01/MergeOcc_
simple. By strictly adhering to the guidelines provided
in the Readme.md file, users can train a generalized oc-
cupancy prediction model showcasing outstanding perfor-
mance on both the SemanticKITTI dataset [1] and the
OpenOccupancy-nuScenes dataset [21].

A more comprehensive version of the codebase will be
released in the near future.

A.2. Experiments Settings

A.2.1. Model Architecture

As detailed in the Sec. 4, We use a 3D voxel-based
method L-CoNet, whose backbone is ResNet3D and a
2D projection-based method PointOcc, whose backbone
is the Swin Transformer. The input points are config-
ured to perform cylindrical partitioning with dimensions
(Hin, Win, Din) = (512,360, 32), representing radius, angle,
and height, respectively. Notably, to maintain the fairness
of experiments, we refrain from adjusting any model’s pa-
rameters. All training processes are kept as originally in-
tended, meaning we use the identical model architecture
and hyper-parameter set. Additionally, since PointOcc
does not provide available checkpoints, the reproduced re-
sults from our own implementation are reported. The oc-
cupancy head produces a voxel representation of dimen-
sions (Hout, Wout, Dout) = (128,90, 10). To enhance perfor-
mance, we adopt a coarse-to-fine query strategy to upsample
the output by a factor of s = 4, following the methodology
of L-CONet.

A.2.2. Task Description and General Settings

The 3D semantic occupancy prediction has garnered sig-
nificant attention for autonomous driving, necessitating
the assignment of semantic labels to all regions within
the spatial domain. Our evaluation is conducted on two
widely recognized datasets for autonomous driving occu-
pancy prediction: SemanticKITTI and OpenOccupancy-
nuScenes. In SemanticKITTI, the dataset’s perceptive
field spans the range from [-72.0m,—72.0m,-3.4m] to
[72.0m,72.0m,3m]. However, the annotated region is re-
stricted from [Om,—25.6m,—-3.4m] to [51.2m,25.6m,3m],
with a voxel resolution of 0.2m. This yields a volu-
metric representation of 256 x 256 x 32 voxels for occu-
pancy prediction. In contrast, OpenOccupancy-nuScenes
spans its perceptual range from [-51.2m,—-51.2m,—5m] to
[51.2m,51.2m,3m], maintaining the same voxel resolution
of 0.2m, resulting in a volumetric grid of 512512 x40 vox-
els. Our analysis is confined to the intersection of ground

truth ranges, as delineated in Sec. 3.3, specifically from
[Om,—25.6m,—3.4m] to [51.2m,25.6m,3m].

A.2.3. The Metric of Occupancy Prediction

For 3D semantic occupancy prediction, we use the intersec-
tion over the union (IoU) of occupied voxels, ignoring their
semantic class as the evaluation metric of the scene comple-
tion (SC) task and the mIoU of all semantic classes for the
semantic scene completion (SSC) task.
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where TP, FP, FN indicate the number of true positive,
false positive, and false negative predictions. C is the class
number.

A.2.4. Optimization, Training and Testing

Notably, throughout all our experiments, we retained the
hyper-parameters from the two baselines without modifi-
cation. This decision partially demonstrates the superior
performance of our method.

During training on both datasets, we employ the Adam
optimizer complemented by a weight decay of 0.01. A
cosine learning rate scheduler initiates with a peak value
of 3e™*, accompanied by a linear warm-up phase for the
initial 500 iterations. The occupancy prediction leverages a
combination of classic cross-entropy loss, Lovasz-softmax
loss [2], and an affinity loss to optimize the geometry and
semantic metrics [5] concurrently.

All experimental procedures were executed using the
mmdetection3d framework. All models undergo training
for 24 epochs, with a batch size of 8, distributed across
8 RTX 3090 GPUs. For the OpenOccupancy-nuScenes
benchmark, we utilize multiple (10) LiDAR sweeps as input,
adhering to a widely accepted practice. Conversely, for the
SemanticKITTI dataset, a single LiDAR sweep is utilized
as input.

Moreover, to ensure gradient backward propagation
through all network parameters and sustain the training pro-
cess, we design a balanced distributed group sampler that
integrates data from distinct datasets in each batch. To the
best of our knowledge, MergeOcc pioneers the application of
the scene completion task on mmdetection3d and explores
the MDT paradigm within this framework.

A.3. Further Ablation about R.A.

Additionally, ablation experiments indicate that the point
cloud range alignment (R.A.) module plays an important
role in improving the performance of MergeOcc. To eluci-
date the underlying causes, we conducted additional abla-
tion experiments focusing on R.A., with results detailed in
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Trained on Method ‘ Tested on OpenOccupancy-nuScenes ‘ Tested on SemanticKITTI
| Geometric IoU | Semantic mloU | Geometric IoU | Semantic mloU
SK+00-nu MergeOcc-V (G.A. for all) 37.0 21.2 68.7 14.2
MergeOcc-V (G.A. for backbone) 38.4(+1.4) 21.4(+0.2) 69.9(+1.2) 14.5(+0.3)

Table 6. Experimental results of different scopes of geometric alignment.

Tab. 7. These findings demonstrate that R.A. is beneficial
exclusively within the Multiple Datasets Training (MDT)
paradigm. Conversely, under the single dataset training
paradigm, R.A. is detrimental due to inherent data limi-
tations. The principal performance improvements are at-
tributed to the learning afforded by larger and more di-
verse datasets, with R.A. serving as the bridge to address
existing gaps. This outcome highlights the superiority and
critical importance of the MDT paradigm.

Model | Dataset | IoU | mloU
L-CoNet (baseline) OO-nu 30.9 15.8
MergeOcc-V (W/ R.A.) | OO-nu | 27.4(-3.5) | 12.5(-3.3)
MergeOcc-V (W/ R.A.) Both 38.2(+7.3) | 21.3(+5.5)

Table 7. Futher ablation experiments about R.A.

A.4. Scope of Using Geometric Alignment

Additionally, We investigate the optimal range for geomet-
ric statistical data alignment, that is, the utilization range of
the dataset-specific norm layer. We categorize the settings
into two distinct configurations: (a) employing geometric
alignment only at the backbone and (b) substituting all norm
layers in the network with geometric alignment. The ex-
perimental results are delineated in Tab. 6, prompting us
to advocate for applying geometric alignment solely on the
backbone of the network.

A.5. Coarse to Fine Stage

We use the geometric coarse to fine query to upsample the
initial output, inspired by OpenOccupancy [21].
Specifically, the coarse occupancy OM e REXEX§xe g
first generated by the baseline model, where the occupied
voxels V, € RNoX3 (N, is the number of occupied voxels,
and 3 denotes the (x,y,z) indices in voxel coordinates) are
split as high-resolution occupancy queries Qg € RNo8"7'x3,

Ou = Tvow(Fs(Vo,m)), €))

where ¥ is the voxel split function (i.e., for (xo,yo,z0)
in V,, the split indices are {xo+ %,yo+ ,i],z()+ %}(i,j,k €
(0,7 —1))), n is the split ratio (typically set as 4), and Ty,
transforms the voxel coordinates to the world coordinates.
Subsequently, we transform Qpy to voxel space to sample

geometric features F9 = Gs(F7, T,y (Qn)) (Gs is the grid
sample function, 7y is the transformation from world co-
ordinates to voxel coordinates). FC layers then regularize
the sampled features to produce fine-grained occupancy pre-
dictions:

0% =G/ (Gr(F9)), (10)

where F9 are FC layers. Finally, O¢ can be reshaped to the
nD nH nWw
volumetric representation O'°! € R x5 x5 xe,

(xs Yy, Z) € 7;/—>V(QH)
(x’ Y Z) 3 mﬁv(QH)’
an
where 7,_,q transforms the voxel coordinates to indices of
the high-resolution query Qy. For LIDAR-based CONet that
without multi-view 2D features, we only sample Oy from
Ft.

Of (Ty—q(x,,2))
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A.6. More Illustration about Semantic Label Map-
ping
A.6.1. Semantic Level differences

Different datasets have obvious semantic disparities. For
instance, SemanticKITTI distinguishes static and dynamic
objects (e.g., ‘car’ vs. ‘moving-car’), which is crucial for
scene understanding. Furthermore, it aggregates certain ob-
ject categories into broader classes (e.g., ‘other-vehicle’ en-
compasses buses and rail vehicles) and details categories for
road infrastructure (‘road’, ‘parking’, ‘sidewalk”) and natural
elements (‘vegetation’, ‘terrain’). Conversely, nuScenes [3]
focuses on distinguishing various vehicle types (e.g., ‘car’,
‘truck’, ‘bus’) and explicitly categorizes urban infrastructure
elements such as ‘traffic-cone’. It also clearly segregates
‘driveable surface’ from ‘sidewalk’, establishing a distinct
boundary between zones that are navigable by vehicles and
those meant for pedestrian use.

Besides, the distribution of point clouds varies signifi-
cantly across datasets, owing to their collection from diverse
geographical locales via different LiDARs, as depicted in
Tab. 1. Such heterogeneity engenders pronounced dispari-
ties in road topographies and object dimensions, as exem-
plified by the visualizations presented in Fig. 5 and Fig. 6.

Hence, semantic discrepancies across different datasets,
stemming from varying class definitions and annotation
granularity, present significant challenges in the MDT
paradigm. Specifically, multi-head models may yield du-
plicate outputs for identical objects that appear in multiple



datasets, leading to uncertainty and redundancy that nega-
tively impact downstream tasks. Therefore, SLM is neces-
sary for aligning initial outputs to a unified label space in
the MDT paradigm.

A.6.2. Computation of Label Space Learning Algorithm

The size of our optimization problem scales linearly in the
number of potential merges |T|, which can grow exponen-
tially in the number of datasets. To counteract this expo-
nential growth and mitigate the complexity, we propose a
greedy algorithm that only considers sets of classes:
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For an appropriately aggressive threshold 7, the number of
potential merges |7| remains manageable. We greedily
grow 7’ by first enumerating all feasible two-class merges
(|t| =2), then three-class merges, and so on. The detailed
algorithm diagram is shown in Algorithm 1. The time com-
plexity of this algorithm is O (|7| max, |L’|), which may re-
main computationally feasible even as the number of datasets
increases.

T’:{te’T

A.6.3. Sequential Paradigm to Add New Datasets to the
Unified Label Space

While the aspiration is to maintain large and comprehensive
training domains and label spaces, practical scenarios of-
ten necessitate the inclusion of more fine-grained labels or
specific testing domains. Upon establishing a unified label
space from an existing set of training datasets, a straight-
forward label space expansion algorithm is employed to fa-
cilitate the addition of further datasets and labels after the
unified model has been trained.

We adopt a sequential optimization paradigm. Specifi-
cally, we execute the unified model on the already merged
dataset and train a domain-specific perception model on the
new domain. Subsequently, the label space learning algo-
rithm is applied to generate a new unified label space. This
approach mitigates the computational overhead associated
with merging more than two datasets.

A.7. Challenges of Merging Datasets
A.7.1. Dataset Introduction.

Following the practice of popular scene completion mod-
els [21-23] , our experiments are conducted on two
prominent LiDAR semantic occupancy prediction bench-
marks, namely, OpenOccupancy-nuScenes [21] and Se-
manticKITTI [1].

SemanticKITTI comprises annotated outdoor LiDAR
scans with 21 semantic labels, organized into 22 point cloud
sequences. Sequences 00 to 10, 08, and 11 to 21 are desig-
nated for training, validation, and testing, respectively. From
these, 19 classes are selected for training and evaluation after

Algorithm 1: Learning a unified label space

Input : {oi,ii}f\i ,: semantic occupancy grids
ground truth and labels for each of the N
training datasets
{{6§j ),ifj )}jzl}f.\:’ |+ predicted semantic

occupancy grids with predicted classes in all

datasets for each training dataset
A,7: hyper-parameters for algorithm
Output L: unified label space

7 the transformation from each individual
label space to the unified label space
1 // Compute potential merges and merge cost
2 L=, L; // Short-hand used to simplify notation
3 Ty « {(D)|l € L} // Set of single labels
4 Compute c; for all single labels ¢ € T. // 0 for most

metrics

s forn=2...Ndo

6 | Tp<{}

7 forteT,_; do

8 for e L do

9 if [ and all labels in t are from different

datasets then

10 compute ¢y}

11 if % < 7 then

12 Add tU{l} to T,,.
13 end

14 end

15 end

16 end
17 end
8 T—UN, T,

19 // Solve the ILP.

20 x « ILP_solver(c, T, 1) // Solve equation (8).
21 Compute L,7 from x

22 Return: L, 7

merging classes with distinct motion statuses and removing
classes with sparse points.

As for OpenOccupancy-nuScenes, it is a large-scale oc-
cupancy prediction dataset deriving from nuScenes. Since
the 3D semantic and 3D detection labels are unavailable in
the test set, Wang et al. [21] did not provide dense occu-
pancy labels of the unseen test set. Consequently, we utilize
the training set for model training and the validation set for
evaluation purposes.

A.7.2. Primary Aspiration and Challenges

In the quest for highly intelligent automated vehicles, scala-
bility and generalizability emerge as pivotal characteristics
in perception models. According to the scaling law, data



plays a crucial role in augmenting both performance and
generalizability.

However, acquiring vehicle travel data poses significant
challenges compared to other forms of visual or textual data.
Particularly, obtaining 3D LiDAR data entails substantial ex-
penses. Consequently, existing autonomous driving datasets
exhibit limited data volumes, hindering the training of mod-
els with requisite scalability and generalization. The conven-
tional single dataset training-and-testing paradigm confines
the source data within a delimited domain. Fully exploiting
all available 3D data holds promise for mitigating resource
expenditure and enhancing performance.

Initially, we have made a lot of attempts to train a
vanilla 3D perception model using multiple datasets by
directly merging existing 3D datasets, such as merging
OpenOccupancy-nuScenes [21] and SemanticKITTI [1].
However, we found that commonly employed 3D perception
models failed to perform satisfactorily across both datasets,
as shown in Fig. 1. This inadequacy stems from the sub-
stantial disparities inherent in 3D point clouds acquired by
diverse LiDARSs, as shown in Tab. 1, rendering previous 3D
models incapable of effectively addressing the significant
data shift.

Furthermore, in the architectural design of the models
to accommodate diverse label spaces, the incorporation of
multiple heads within the network is deemed imperative.
To facilitate gradient backward propagation across all net-
work parameters and sustain the training process, a balanced
distributed group sampler has been designed. This sampler
amalgamates data from disparate datasets within each batch,
thereby ensuring that data for each batch is sequentially
drawn from distinct datasets.

A.8. Extended Visualization of Occupancy Predic-
tion Results

A visual comparison of the occupancy prediction results
generated by the primary methods is illustrated in Fig. 5
and Fig. 6.

For Fig. 5 and Fig. 6, we utilize the proposed MergeOcc-
V model trained jointly on OpenOccupancy-nuScenes and
SemanticKITTI datasets and showcase the outcomes on the
validation sets of these two datasets. These results com-
prehensively demonstrate our ability to achieve improved
occupancy prediction simultaneously for OpenOccupancy-
nuScenes and SemanticKITTI datasets using a single per-
ception model.

The proposed method produces results that more closely
align with the ground truth in both structural layout and
semantic consistency, capturing diverse semantic elements
such as roads, vegetation, and buildings with greater clarity
and more accurate category boundaries. Compared to L-
CoNet and the D.M. method, it achieves a more complete
and continuous representation of the scene and performs

well simultaneously on both types of LiDAR.

Furthermore, owing to the denser ground truth annota-
tions provided by the SemanticKITTI dataset, the outcomes
yielded by MergeOcc on the OpenOccupancy-nuScenes
dataset manifest heightened credibility compared to the
ground truth in certain areas, such as the drivable surface
and the trunk.



Figure 5. Visualizations of occupancy prediction results on OpenOccupancy-nuScenes.



1on results

Figure 6. Visualizations of occupancy prediction results on SemanticKITTI.
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