Monocular Facial Appearance Capture in the Wild

Supplementary Material

In this supplementary document we begin by discussing
the details of our capture protocol and initial tracking steps
in Section 7. We provide more implementation details in
Section 8. In Section 9 we highlight the particulars of our
implementation of the related methods we use for compar-
isons, and elaborate on the synthetic dataset we used for
evaluation. Finally, we add additional results and failure
cases in Section 10.

7. Dataset Details

7.1. Capture Protocol

We record videos at 25 fps using a Canon EOS 1200D cam-
era fixed on a tripod. Depending on the distance to the sub-
ject, the camera is mounted with either a 35mm or 60mm
lens and we use the corresponding focal length as a known
parameter when calibrating the camera. The subjects are
asked to slowly rotate their head 20 to 30 degrees to the
left, right, up, and down directions. We do not record large
head rotations as we noticed that the estimated head poses
tend to be inaccurate on side view. Fig. 10 (row 1) shows
some example frames of a dataset, where the left-most and
right-most frames are the most extreme head rotations in
this sequence. Note that even though we do not see a side
face silhouette in the data, our method can recover the cor-
rect nose shape from shading as we have shown in Fig. 8.
The datasets we captured span across multiple days at dif-
ferent locations.

7.2. Initial Tracking

In the initial tracking stage, we estimate an initial mesh and
per frame head poses. The initial mesh is parameterized us-
ing blendweights of a PCA face basis computed from the
dataset of Chandran et al. [10], which includes 50 eigen
faces for identity and 25 for expression. Our tracking algo-
rithm uses the combination of a landmark [11] loss and a
photometric loss, similar to Qian [53]. The only difference
is that we solve for a global expression code since we as-
sume the expression does not change in the same sequence.
We apply a weight of 100 on the landmark loss and a weight
of 30 on the photometric loss for all our datasets.

We further obtain an initial albedo estimate by averag-
ing the projected texture across all the frames, and then we
compute a piece-wise constant version based on a prede-
fined face segmentation as in Rainer et al. [54]. The specu-
lar intensity map is initialized as a grayscale version of the
initial diffuse albedo.

Figure 10. Example frames and initial tracking of a dataset. The
first row shows in the input frames and the second row is the initial
tracked geometry overlaid on the input.

8. Implementation Details

We capture 500 to 800 frames for each subject. We then
uniformly sample around 250 frames to use in the inverse
rendering. We did not observe a performance gain or drop
when using all of the frames. The images are cropped to
1K resolution. We also solve the texture maps at 1K reso-
Iution. The environment map is a cubemap with resolution
6% 256 %256 at the largest mip-level, and resolution 6 x 8 x 8
at the smallest mip-level. For each pixel, we draw 256 light
samples and 256 BRDF (cosine) samples for the diffuse ren-
der, and 64 samples to estimate the view-dependent specular
visibility. We employ the Adam optimizer [19] with a learn-
ing of 0.1 for vertex positions and the environment map, and
0.001 for the textures. We use the differentiable rasterizer
from Laine et al. [37] to obtain the primary visibility and the
OptiX [52] engine for ray tracing. Each subject is trained
for 6000 iterations which takes around 2 hours on a Nvidia
RTX 3090 GPU. The weights for Eq. 10 are defined as

Amask = 0.1, ALap = 10, Ajigne = 0.1,

(11)
Arough = 0.1, Agifruse = 0.01.

9. Experiment Details
9.1. Implementation of the Related Methods

Next we describe the steps performed to run the compar-
isons. We use the default parameters of FLARE [4]. We
noticed that the FLARE geometry is very bumpy, hence we
tried setting a larger weight on the Laplacian mesh regular-
izer. However, this resulted in flatter face geometry and did
not improve the results.

For NextFace [15—-17], we obtained the best results in our
experiments using only three frames that cover the whole
face region. A similar behavior was observed by Azinovié
et al. [1] in their experiments.

The original capture protocol used in SunStage [62] has a
different format compared to ours; they record only a frontal



view with the person rotating 360 degrees in place. We thus
adapt the preprocessing code to the one from FLARE when
running SunStage. We also do not solve for the focal length
of the camera and set it as the ground truth value. In our ex-
periments, the shape does not change much from the initial
DECA [22] result, in both the coarse alignment stage and
the photometric optimization stage of SunStage.

NextFace and SunStage have no code for relighting in
their release, so we did not compare relighting performance
against these two baselines. The statistics in Table | are
averaged over frames used in the optimization, i.e., all the
frames for our method, FLARE, SunStage, and only three
frames for NextFace.

9.2. Synthetic Dataset

We render a synthetic dataset with Lambertian material for
the ablation study in Fig. 6. The assets, i.e. ground truth
diffuse albedo, mesh and environment maps are shown in
row 1 of Fig. 11, and example frames are shown in row 2.
The generated head poses are similar to those from a real
dataset. We perform the same initial tracking algorithm us-
ing only the landmark loss on a front-facing frame. Instead
of solving per frame head poses as for a real dataset, we use
the ground truth head poses for the synthetic dataset in the
inverse rendering stage.

10. Additional Results

Next we present additional results for the ablation and show
some challenging situations for our algorithm.

Visualization of the Visibility. First we provide addi-
tional visualizations of the view-dependent visibility under
different roughness in Fig. 12. This highlights the areas
that are impacted by the visibility computation. When the
roughness is small (mirror material), this visibility term is
close to a binary mask and when the roughness is large (dif-
fuse material), it gets closer to a view-independent ambient
occlusion term. Note that the approximation error of Eq. 6
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Figure 11. Assets and example frames of the synthetic dataset.

Figure 12. Visualization of the estimated view-dependent specular
visibility term with different roughness values.

is small for a smaller roughness value and big for a larger
roughness value. Applying the same approximation for the
diffuse component would lead to a large error. We also show
an example in Fig. 13 of how our visibility-modulated split-
sum approximation can be used in other rendering tasks as
a practical way to add self-shadowing to glossy objects.
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Figure 13. Rendering of a glossy Happy Buddha.

Failure Cases. One of the limitations of our method is
that we rely on good head pose estimation from the initial
tracking stage. If the initial tracking is incorrect or impre-
cise, see (Fig. 14 row 2), a misalignment of the render and
the input image (Fig. 14 row 3 column 3) occurs, making the
face appear distorted. We tried optimizing head poses in the
inverse rendering stage but the results are often jittery over
time and the textures are blurrier. Therefore, we decided to
rely solely on the initial tracking for the head pose. Note
however, that our method still produces reasonable results
even when the head poses are inaccurate. In these cases,
our method explains the discrepancies between the tracked
mesh and the input image using texture.

Although in theory our method can work under arbitrary
static lighting conditions, there are challenging cases when
our method still does not produce a good enough appear-
ance decomposition. One such example is shown in Fig. 15.
In this example, the left side of the face is overexposed
while the right side is much darker in all frames. While
the render still matches the input image, the reconstructed
diffuse albedo and specular intensity maps contain a consid-



Figure 14. Results from good and bad head pose estimation from
the initial tracking stage. The render error maps are displayed with
a scale of -0.05 = . 0.05.

Figure 15. Poor appearance decomposition in challenging lighting
conditions. While the render still matches the ground truth image,
the albedo map contains some minor baked-in lighting.

erable amount of baked-in lighting. Note however, that our
model still manages to disentangle a major part of the light-
ing from the appearance, i.e. the brightness on the left and
right sides of the diffuse albedo is similar. Capturing the
same subject under multiple different lighting conditions
can potentially improve the disentanglement [2], which we
leave as future work.

Effects of \jc,. We use \ge, = 19 based on [50], but this
smoothing term can be tuned for different subjects to get
better geometry. An ablation for different values of Ay, is
shown in Fig. 16. Note that a large )4, leads to loss of
details, but a small A4, can lead to self-intersections.

Novel Views in the Capture Environment. We show
novel view renders in the capture environment in Fig. 17.
We primarily focused on the facial regions for this project.
Artifacts around the boundaries can be improved with some
engineering efforts, such as better masking and better initial
alignment. Reconstruction of the hair and shoulders is also
an interesting area for future work, which can improve the
overall quality.

Figure 16. Effects of Ageo. The shaded meshes are shown on the
top row with the corresponding normals visualized on the bottom.

Figure 17. Novel views rendered in the capture environment (top
row) along with the corresponding meshes (bottom row).

Comparison with CoRA. CoRA [28] requires a more
constrained capture setup with a co-located light and cam-
era in a dark room. We ran our method and CoRA on a sub-
ject using the CoRA capture protocol, see Fig. 18, demon-
strating that our method achieves equally good reconstruc-
tion given the same data. Additionally, our method also
works in more generic environments.
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Figure 18. Comparison with CoRA on their data protocol.
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