NavQ: Learning a Q-Model for Foresighted Vision-and-Language Navigation

Supplementary Material

6. Details on the Model and Training

6.1. Preliminaries on DUET

The baseline model for our NavQ agent, DUET [14], pro-
poses a dual-scale action prediction strategy on a topologi-
cal graph for the VLN task. Due to its generality, DUET’s
architecture has been adopted by many subsequent stud-
ies [15, 64, 71, 79, 87, 123, 141]. At each navigation
timestep, it involves the following computation procedures:

(1) Input processing. The agent perceives the surround-
ing environment at its current location through a panoramic
RGB observation. The panoramic image is discretized into
N = 36 views (3 elevation angles times 12 heading an-
gles) and processed by a frozen visual encoder. The agent
also gets the feature for M? visible objects (pre-defined or
detected by an off-the-shelf detector, see Section 7.1 for de-
tails). The feature vectors for views and objects are concate-
nated and sent to a learnable panorama encoding module,
which is implemented as a 2-layer Transformer. The results
are {rf}il and {of}ffl mentioned in Eq (1) and (3). On
the other hand, the word embeddings of the instruction text
is sent to another 9-layer Transformer to obtain the textual
feature w.

(2) Graph update. The agent builds a topological graph
G" on the fly. The graph starts as a single node represent-
ing the starting position of the episode. VLN’s task set-
ting [3] assumes that the agent has access to the locations
of navigable viewpoints around its current place. Thus, it
can continuously expand its graph by incorporating neigh-
boring nodes. There are two types of nodes on the graph:
visited nodes and observed but unvisited nodes. For each
visited node N, the agent stores the mean of its view fea-
tures (37 va L %, tis the step that it visits V) as its feature.
For each unvisited node N/, the agent maintains a list. If N
is a neighboring node of the agent’s location at step ¢, it
identifies one of the IV views that is closest to the direction
of N and inserts its feature r} into the list. (Note that an
unvisited node can be observed by multiple visited nodes.)
The agent takes the mean of this list as the feature for the
corresponding node.

(3) Global action prediction. DUET features a dual-
scale planning process. The coarse-scale branch outputs a
probability across all the unvisited nodes on G* (i.e., the
global candidates). It is based on a 4-layer Graph Trans-
former named as global encoder (GE). Each layer performs
sequentially a cross-modal attention that interacts the tex-

tual feature w with the node features {ut}z _o»and a graph-
aware self-attention that takes into account the structure of

the graph to further process the node features. vf, is a zero
vector representing a pseudo “stop” node The outputs of

GE are the updated node features {vt}Z o> as in Eq (2).

They are transformed into logits {sf’t}izol by an MLP.

(4) Local action and object prediction. The fine-scale
branch of DUET outputs a probability across the unvisited
neighbors of the current node (i.e., the local candidates). It
is based on a 4-layer Transformer named as local encoder
(LE). Each layer performs sequentially a cross-modal atten-
tion that interacts the textual feature w with the concatena—
tion of view features {r!} " _, and object features {3,
and a self-attention that further processes the concatenation.
r§ is a zero vector representing the “stop” action. The out-

puts of LE are the updated view features {ff}f\io and object

features {ot} as in Eq (3). They are transformed into

=1’
action logits { fit } and object logits {s;" t} by two
i=0

separate MLPs.

(5) Dynamic Fusion. DUET dynamically fuses the
global prediction and local prediction to get the final action
logits {s’;}‘zi;l The fusing weight is obtained by sending
the concatenation of v{ and r{ to an MLP and a Sigmoid
funtion.

(6) Action execution. The agent selects a candidate node
based on the fused probability. It then finds the shortest path
from its current location to this node on G*, and traverses
along it. When the agent decides to “stop”, it selects an
object as its prediction according to the local object proba-
bility.

6.2. Details of the Q-Model

In this subsection we describe the training of the Q-model
in more detail. To get each training sample, we randomly
select a training scene and a starting node. Then, a partial
trajectory is obtained by uniformly choosing an unvisited
local candidate for a random number of steps. Based on
this trajectory, the model input is formed as follows.

* For each node in the trajectory, we encode its 36 view
images into visual features, and pool them into 12 vec-
tors corresponding to the 12 heading directions. We take
the natural language description of each view provided by
LangNav [92] (extracted using BLIP [60]), encode them
into textual features, and pool them into 12 vectors as
well. The visual features and textual features are pro-
cessed by linear projections and added together, forming
the full node feature of shape 12 x D.

* For each action in the trajectory, we encode its orienta-
tion using sin and cos functions. The resulting vector is

linearly projected to D channels. For each local candi-
date actions at the current node (i.e., the last node of the
partial trajectory), we encode it in the same way to a D-
dimensional vector.

e We arrange the node features and action features al-
ternately following the order in the trajectory, and ap-
pend the candidate features at the end. As illustrated
in Figure 3, the input to the Q-model is a sequence of
13|T| — 1+ C tokens, where | T| is the length (number of
nodes) of the partial trajectory, while C' is the number of
local candidates. Each token is a D-dimensional vector.

The Q-model is implemented as a 4-layer Transformer.
Apart from the traditional positional encoding that captures
the order of tokens, we introduce an additional positional
encoding to represent the token order within a node. Specif-
ically, this encoding consists of 13 learnable tokens, which
are added to the 13 input tokens corresponding to each
node-action pair. Notably, the last positional token is added
to each candidate token.

We adopt the method described in Section 3.3.1 to form
the ground-truth Q-feature. Before delving into the imple-
mentation details, we first provide a more precise formu-
lation of the rollout policy 7 used in our method. Given
a partial trajectory T and a candidate action a (leading to
node A), T U { A} is expanded to a full trajectory T un-
der w. At each step, the agent randomly selects a feasible
local candidate according to a uniform distribution, where
feasibility means that this candidate node A ensures that
the one-step-longer rollout path is the shortest path from
T[—1] to V. The agent terminates when there is no feasi-
ble candidate to choose. This formulation is consistent with
the definition of the set of possible rollout trajectories, T.
In Section 3.3.1, we put forward a claim that for a given
pair of partial trajectory T and node N/, there is at most
one pair of (a,t) that makes P, (N, ¢|T,a) > 0 under the
policy 7. This can be easily proved by contradiction. Sup-
pose P (N, t1|T,a1) > 0 and P (N, t2|T,as) > 0. If
t1 # to, then there are two paths of different length go-
ing from T[—1] to A/. They cannot simultaneously be the
shortest path and then cannot both be obtained under pol-
icy m. If a1 # ao, then there are two different paths going
from T[—1] to V, containing .4; and A, respectively. Still,
they cannot both be obtained under policy 7. Therefore, the
claim is proved, and we can use t(N) to denote the unique
rollout step ¢ for each future node N

We now provide a practical implementation for comput-
ing Q(T,a). We first identify all the nodes NV in the scene
that satisfy the following condition: the shortest path from
N to T[—1] passes through A. We also record the roll-
out step t(N') for each node as the hop of the shortest path
from T[—1] to N. We sort these nodes in ascending order
based on the values of ¢ and sequentially compute their roll-
out probabilities P (N, ¢(N)|T, a). Finally, we use Eq (8)

to obtain Q(T,a) = > Pr(N, t(N)|T,a)y" N R(N).
As stated in Section 3.3.2, R(N) is an abstracted text-
based feature. We set it to the average textual feature of
the 36 views’ natural language descriptions. The resulting
Q(T, a) serves as the ground-truth Q-feature for candidate
action a.

The Q-model is trained on the training split of Matter-
Port3D [3, 7], which is also shared by REVERIE [96] and
SOON [143]’s training set. For experiments with additional
scenes, we employ the scenes, graphs, and images gener-
ated by ScaleVLN [123], which consists of 800 scenes from
HM3D [102] and 491 scenes from Gibson [128]. We do not
use the trajectory annoations generated by ScaleVLN. For
validation, we evaluate the Q-model on the val-unseen split
of REVERIE.

6.3. Details of the Future Encoder

The proposed future encoder has the same Graph Trans-
former architecture as DUET’s global encoder, but takes
different input. We build an additional graph G? that shares
topology with DUET’s navigation graph G®. For each un-
visited node, we maintain a similar list as described in the
step (2) of Section 6.1, while the contents of it are the Q-
features related to the node instead of the view features. For
each visited node, we extract the average feature for textual
descriptions (i.e., R(\)) as the node feature.

The output of GE, FE, and LE are fused together by
weighted addition. Thus, the Sigmoid function employed
by DUET’s dynamic fusion (Section 6.1, step (5)) is re-
placed by a Softmax function.

6.4. Training Tasks

The training of DUET consists of two stages: offline pre-
training and online finetuning. In the pre-training stage, a
batch of partial trajectories are sent to the model, which is
trained to perform one of the following training tasks:

* MLM (masked language modeling). A random mask is
applied to the instruction text, and the agent is asked to
reconstruct the masked tokens. For this task, the cross-
modal layers in GE/FE/LE use the node/view features as
key and value, while the textual features are used as query.
The output of them are summed together and processed
by an MLP head for word prediction.

* SAP (single-step action prediction). The agent is asked to
choose the best next-step action (among the global candi-
dates) given a partial trajectory. The output action logits
are supervised by cross-entropy loss, and the ground-truth
is the candidate with the shortest distance to the destina-
tion. This loss is computed on the global, local, and fused
logits in DUET. We further apply it to the future logits
output by FE.

* OG (object grounding). The agent is asked to predict the
correct object given a trajectory ending at a correct lo-

Table 5. Distribution of parameters in the NavQ agent. The listed
modules from left to right are the panoramic encoder (Section 6.1,
step (1)), the textual encoder (Section 6.1, step (1)), the global en-
coder (Section 6.1, step (3)), the future encoder (Section 6.3), the
local encoder (Section 6.1, step (4)), the Q-model (Section 6.2),
and the prediction heads for generating and fusing logits.

PE TE GE FE LE QM Heads | Total
152 87.6 379 392 378 305 41 |2524M

cation. The output object logits are supervised by cross-
entropy loss.

* MRC (masked region classification). Similar to MLM,
some of the input views and objects are masked, and the
agent is asked to predict their semantic class. An MLP
is appended after LE for prediction. The ground-truth se-
mantic labels are the output class probability of a frozen
classification model and a frozen detection model.

Our training stage 2 (Section 3.5) inherits the design
of these tasks. The proposed progress-related sub-tasks
are integrated into SAP. To be specific, we compute the
ground-truth historical progress s; and distance to go ss
for each global candidate (Section 3.4). We then clip them
to [0, 1], and discretize them into 5 bins. The output node
features of GE and FE are sent to two separate MLPs to
perform a S-category classification task. The two cross-
entropy losses are added to SAP’s original loss. We expect
the classification-based progress estimation to be more ro-
bust than regressing float values. Considering the range of
dist(S, C), dist(C, A), dist(A, G), the normalizing constants
D, and D, are set to 2 times the length of expert trajectory,
and the length of expert trajectory, respectively.

In the finetuning stage, the agent performs sequential de-
cision making in the scene. At each time step, the predicted
action (a probability distribution on all the global candi-
dates and “stop”) is supervised through cross-entropy loss
by a pseudo expert policy, which identifies the candidate
node that minimizes the sum of the distances to the current
node and the destination based on the complete graph of the
scene. The agent then finds the shortest path from its cur-
rent location to its chosen candidate on the graph it builds,
and traverses along it to reach the next state. During fine-
tuning, the agent chooses candidates by sampling from the
fused action probability. While for inference, it selects the
candidate with the maximum probability.

6.5. Model Statistics

In Table 5, we present the count of parameters for each mod-
ule of our NavQ agent. Compared with DUET, the newly
proposed FE and QM bring about 38% additional param-
eters, while they clearly boost the overall performance as
shown in Table 1. Note that the Q-model is frozen when
training the agent, reducing the impact on training cost. As
for inference, we assess the efficiency by recording the av-

erage time for a forward pass of the full model. At each
navigation step, DUET spends ~ 0.032s to make a decision,
while NavQ spends ~ 0.052s under the same environment.

7. Details on the Datasets and Metrics
7.1. Datasets

Experiments are performed on two goal-oriented VLN
datasets, REVERIE [96] and SOON [143]. REVERIE pro-
vides high-level descriptions of the target locations and ob-
jects as instructions. We adopt the same train/val/test split
strategy as DUET [14]. The training set consists of 60
scenes and 10,466 instructions. The unseen validation set
consists of 3,521 instructions in 10 scenes with no over-
lap to the training scenes. The test set consists of 16 novel
scenes with 6,292 instructions. The average instruction
length is around 21 words, and the expert trajectory typ-
ically requires 4—7 navigation steps. Pre-defined object
bounding boxes are provided for each navigable location,
and the agent needs to select one box as its predicted ob-
ject. During training stage 2, We incorporate the additional
synthetic instructions generated by a speaker model follow-
ing DUET [14], which expand the training data from 10,466
to 30,102 instruction-path pairs.

SOON [143] is designed for a task named “From Any-
where to Object” (FAO). It requires the agent to find the
target object no matter where its starting point is. The in-
structions are unrelated with the agent’s initial location, but
only describe the position and attributes of the target object,
its relation to other objects, and its residing region. Each in-
struction contains an average of 47 words. The correspond-
ing paths range from 2 to 21 steps. Object bounding boxes
are not provided for SOON, and the agent must predict a di-
rection representing the target object’s center at the ending
place of its trajectory. The training set of SOON comprises
3,085 instructions. Each instruction is paired with differ-
ent starting points, resulting in 28,015 trajectories across
38 houses. The validation set and test set are composed of
339 instructions from 5 novel scenes, and 1,411 trajecto-
ries from 14 novel scenes. Each instruction is labeled with
10 different starting locations and 10 corresponding expert
trajectories.

7.2. Evaluation Metrics

For navigation performance, we adopt the following stan-

dard metrics:

* Success Rate (SR): The ratio of paths that successfully
reach a correct location. For REVERIE, the correct lo-
cations are those where the target object is visible. For
SOON, a ground-truth goal node is defined for each in-
struction by experts. The correct locations are the nodes
within 3 meters of the goal node.

* Oracle SR (OSR): The SR computed under an oracle

Table 6. An ablation study on the effect of Q-learning techniques.
Results are obtained on REVERIE’s val-unseen split.

Q-Model OSR SR SPL RGS RGSPL
w.0. 5442 48.14 3338 30.19 21.05
vision-based 5345 48.11 33.79 31.64 22.56
rand policy-based | 58.68 51.29 36.23 3434 2459
ours 60.47 53.22 38.89 36.84 27.12
stop policy.

* SR Penalized by Path Length (SPL): The SR adjusted
to account for the path length. The original 0-1 success
state is weighted by %.

We also utilize the following metrics that take object
grounding into consideration:

* Remote Grounding Success (RGS): The proportion of
instructions executed successfully. For REVERIE, it re-
quires the agent to output the correct object instance. For
SOON, it requires that the output direction falls in the
range of the correct object’s bounding box.

* RGS Penalized by Path Length (RGSPL): The RGS ad-
justed to consider the path length, similar to SPL.

8. Additional Experimental Results
8.1. Ablation Study on the Training of Q-Model

Here we give an analysis on the various techniques pro-
posed in Section 3.3 for pre-training our Q-model. In Sec-
tion 3.3.2, two designs are put forward for enhancing the
generalizability of the Q-features. We have visualize the ef-
fect of the MAE pre-training by showing the loss curve in
Figure 4, while the benefits of text-based prediction cannot
be easily seen from the MSE loss, since the visual features
and textual features have different scale. Thus, we compare
using a visual prediction-based Q-model (i.e., R set as the
aggregated average view features) against our default set-
ting. As is Table 6, employing textual features has a clear
advantage over the vision-based Q-model.

Besides, we try out using a random policy instead of the
m described in Section 3.3.1 and Section 6.2. For each state-
action pair, we use simulations to approximate the expecta-
tion in Eq (6), where the agent uniformly chooses a local
candidate at each rollout step. As in Table 6, integrating
this random policy-based Q-model will lead to higher navi-
gation performance than the baseline without Q-model, but
the gain is less significant than our default setting. There-
fore, the preference for optimal paths in 7 is indeed helpful
for executing goal-oriented VLN tasks.

8.2. Results with Other Backbones

NavQ is a modular model enhancement that can be inte-
grated with any baseline method focusing on leveraging
historical information. In the main text, we mainly adopt
DUET [14] as the baseline. In accordance with the review-
ers’ suggestions, here we explore an alternative backbone,

Table 7. The results on REVERIE with BEVBert as backbone.

OSR SR SPL RGS RGSPL

Val BEVBert [2] | 56.40 51.78 3637 3471 2444
Unseen | NavQ (Ours) | 60.07 54.08 38.49 3536 2545

Test BEVBert [2] | 57.26 52.81 3641 32.06 22.09
Unseen | NavQ (Ours) | 60.04 5242 3640 36.59 24.95

Table 8. The results on R2R.

TL NE, SRt SPLt
Val DUET [14] | 13.94 3.31 72 60
Unseen | NavQ 13.80 3.06 73 63
Test DUET [14] | 1473 3.65 69 59
Unseen | NavQ 1441 330 72 63

BEVBert [2], which models the local environment with a
top-down metric map, complementing the global topologi-
cal representation. As shown in Table 7, incorporating the Q
model and the future branch into BEVBert leads to notable
improvements on most evaluation metrics, demonstrating
the generalizability of the proposed method to some extent.

8.3. Results on Other Dataset

Based on the reviewers’ suggestions, here we discuss the
potential of NavQ on other VLN datasets. Apart from
REVERIE [96] and SOON [143], there are some classical
datasets, such as R2R [3] and RxR [56], in which the in-
structions are procedure-based rather than goal-based. As a
result, the agent is required to follow the route described in
the instructions, rather than merely reaching a specified des-
tination. We note that our proposed method is tailored for
goal-oriented VLN, and the formulation of Q-learning en-
courages the agent to reach the destination as quick as pos-
sible. Thus, NavQ is not quite suitable for procedure-based
benchmarks, especially RxR, since it features non-shortest
expert paths. We conduct preliminary experiments with
NavQ on the R2R dataset, as it still satisfies the shortest-
path assumption. As shown in in Table 8, NavQ achieves
better performance than the base model, especially on the
efficiency-related metric. However, the improvement is not
as significant as on REVERIE, since the goal-centric future
branch may not fully utilize the process-related information
in the instructions.

8.4. More Visualization Results

In Figure 6, we provide two more qualitative comparisons
between the NavQ agent and the baseline agent.

In addition, we discuss the distribution of navigation er-
rors. Among the 3,521 validation instructions, our model
produces 580 predicted trajectories that were identical to the
expert trajectories, whereas DUET produces 468. For the
remaining 2,941/3,053 trajectories, we analyze the position
where the model makes the first error, i.e., deviates from the
expert trajectory. The results are presented in Figure 7. It

I Go to the hallway with many vase exhibitions and pick up the fire extinguisher. |

Figure 6. A qualitative comparison of our method and the baseline
agent. In the upper example, NavQ reaches the correct destination
while the baseline does not. In the lower example, NavQ arrives at
the target object with less steps than DUET.

1400 == NavQ
—=— DUET
1200

1000
800
600

number of trajectory

400

200

04— , . . : -
1 2 3 4 5 6
first error step

Figure 7. The distribution of navigation errors on REVERIE'’s val-
unseen set.

can be noticed that our model makes fewer mistakes at the
beginning and middle stage of the episode. This aligns well
with the motivation of our foresighted agent, which is to
make better decisions when the historical information (ob-
servations up to now) is not sufficient enough.

	Details on the Model and Training
	Preliminaries on DUET
	Details of the Q-Model
	Details of the Future Encoder
	Training Tasks
	Model Statistics

	Details on the Datasets and Metrics
	Datasets
	Evaluation Metrics

	Additional Experimental Results
	Ablation Study on the Training of Q-Model
	Results with Other Backbones
	Results on Other Dataset
	More Visualization Results

