
Appendix for Robust Multi-View Learning via Representation Fusion of Sample-Level Attention
and Alignment of Simulated Perturbation

1. Related Work

In this section, we discuss the connections and differences between our method and related work including multi-view learning,
contrastive learning, and attention mechanism.

1.1. Multi-view learning

Multi-view learning (MVL) refers to models learning comprehensive information from multiple views with matched cor-
respondences. In this paper, we focus on deep learning based MVL methods and categorize existing methods into two
types, i.e., representation fusion and representation alignment. Representation fusion methods are the earliest popular in
deep MVL, which aims to obtain a fused representation that is superior to representations of individual views [1, 29]. Many
of these methods produce more accurate results on the fused representation than that on individual views’ representations,
and use it to further refine their representation learning [50, 54]. Representation alignment methods are first investigated
by canonical correlation analysis based deep MVL approaches [2, 41, 53]. With the advancement of contrastive learning
from self-supervised learning, an increasing number of deep MVL methods have adopted contrastive learning to capture
the agreement across views [24, 26, 43, 44, 49]. To achieve the representation alignment, these contrastive MVL methods
treat different views of a sample as positive pairs and maximize the similarity among their representations, thereby aiming to
learn the semantic information across multiple views [7, 20, 42, 52]. Different from previous deep MVL methods, our RML
performs the sample-level attention based multi-view representation fusion, and then achieves the simulated perturbation based
representation alignment between the fused representations rather than between views.

1.2. Contrastive learning

Contrastive learning is a validated and effective paradigm for self-supervised representation learning [11, 37]. It usually
constructs positive and negative sample pairs and encourages the model to learn discriminative representations, thereby
aggregating the representations of positive sample pairs closer [8, 31]. The approaches for constructing positive sample pairs
vary according to the types of data. For instance, in terms of image data, data augmentation techniques such as rotation and
color filtering are typically employed to generate multiple images that are semantically consistent [10, 14]. For time-series
data, adjacent samples in the sequence are used to construct positive sample pairs [32, 34]. Recently, contrastive learning has
made significant progress in multi-view or multimodal domains, where different views or modalities of a sample are treated as
positive sample pairs without the need for data augmentation [13, 35, 43]. Motivated by the success of data augmentation
in contrastive learning [27, 45, 48], in this work, we propose a novel simulated perturbation based multi-view contrastive
learning method for representation learning and downstream tasks, where the positive sample pairs are constructed by the two
perturbed versions of fused representations.

1.3. Attention mechanism

Attention mechanism is an important technique initially introduced in the context of neural machine translation which enables
models to selectively focus on relevant parts of the input data [3, 33]. It computes a weighted sum of input features, where the
weights are dynamically determined based on the relevance of each feature to the task at hand, and this allows models to handle
dependencies more effectively than traditional methods. Due to this property, attention mechanism has been integrated in many
MVL applications [16, 30, 54]. Transformer [46] is one of the most popular networks in deep learning, which is built upon the
attention mechanism and excels at modeling long-range dependencies between elements in sequences. Recent advances have
also employed transformer-like networks to MVL [35, 39, 51], where the goal usually is to integrate and process information
from multiple views such as text, image, audio, and video. However, the heterogeneous and imperfect natures of real-world
multi-view data often hinder the transferability of existing successful experiences. To this end, this work proposes a robust
MVL method which has a sample-level attention based multi-view fusion model using a transformer-like encoder network.
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2. Implementation Details
2.1. Method details

For unsupervised multi-view clustering task, we directly utilize the model Fθf and minimize the loss function LRML. Then,
we employ the unsupervised clustering algorithm K-means [12] on the fused representations Z to obtain the clustering results.

For noise-label multi-view classification task, we extend our RML model Fθf by adding a classification head Hω , obtaining
class prediction probabilities qi = Hω(Fθf ({xm

i }Vm=1)) through Softmax. Subsequently, we minimize the sum of LRML and
cross-entropy loss on the training set. In this paper, we propose two variants for noise-label multi-view classification. The first
one is formulated as follows:

L = LCE + λLRML

s.t. LCE = LCrossEntropy(Y, {Xm}Vm=1)

= −
∑
i

yi logqi.

(1)

This variant is entitled as RML+LCE. Furthermore, we incorporate the proposed simulated perturbations to establish multiple
cross-entropy objectives, for further improving the model robustness to imperfect multi-view data. To be specific, the second
variant is defined as RML+ LMCE:

L = LMCE + λLRML

s.t. LMCE = LCrossEntropy(Y, {Xm}Vm=1)

+ LCrossEntropy(Y, {Nm}Vm=1)

+ LCrossEntropy(Y, {Mm}Vm=1)

= −
∑
i

(
yi logqi + yi logq

N
i + yi logq

M
i

)
,

(2)

where we have qN
i = Hω(Fθf ({nm

i }Vm=1)) and qM
i = Hω(Fθf ({mm

i }Vm=1)), by which we make the classification model
more robust to the noise perturbed data nm

i as well as the unusable perturbed data mm
i .

For cross-modal hashing retrieval task, we apply our method RML in a plug-and-play manner to existing cross-modal
hashing retrieval approaches. Specifically, we integrate our RML model Fθf on the top of the representation learning module
of methods UCCH [17] and NRCH [47], and incorporate our optimization objective LRML as a regularization term into that of
the cross-modal retrieval objective (i.e., LUCCH and LNRCH):

L = LUCCH + λLRML,

L = LNRCH + λLRML.
(3)

2.2. Experiment details
In this paper, we established the common model architecture of RML for the three different tasks, i.e., multi-view clustering,
multi-view classification, and cross-modal retrieval. This helps demonstrate the universality of our RML framework and
promotes the comparable evaluation. Specifically, we leverage MLP networks and attention layer to implement the multi-view
transformer fusion network Fθf in RML. Firstly, V parallel MLP networks are leveraged to transfer the input data {Xm}Vm=1

into word embeddings {Em}Vm=1. For the m-th view, the MLP network can be illustrated as Xm → Fc(Dm)−GELU −
dropout(0.2) → Fc(Dm)− dropout(0.2) → Em, where Fc(Dm) denotes the fully-connected network with Dm neurons
(Dm is the data dimensionality of the m-th view), GELU is the active function of Gaussian Error Linear Unit [15], and
dropout(0.2) is the dropout operation [38] with the rate of 0.2. Upon {Em}Vm=1, we adopt the typical transformer encoder
network to obtain V encoded embeddings {Fm}Vm=1. Here, we use only one transformer encoder block [46] and the number
of heads for multi-head attention is set to 1. Finally, we add multiple {Fm}Vm=1 and utilize a one-layer fully-connected MLP
network to achieve the fused representation Z. The dimensions of {Em,Fm}Vm=1 and Z are all set to 256 (i.e., de and d are
set to 256). We employ InfoNCE [31] contrastive loss to implement the optimization objective LRML, where the temperature
τ is set to 0.5. To train the model parameters, the optimizer we choose is Adam [21] with the learning rate of 0.0003. σ in the
Gaussian distribution N (0, σ2) is set to 0.4.

When using K-Means clustering in our experiments, different views are concatenated to form a single one. For a fair
comparison, the hyper-parameters of all comparison methods adopted the recommended settings given by the authors, and
these comparison methods use the same input multi-view or multimodal data as that used in our RML.
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In our cross-modal retrieval experiments, we follow the experimental settings and results in UCCH [17] to evaluate the
performance of baselines and our RML. Specifically, we conduct two kinds of cross-modal retrieval task, i.e., Image → Text
and Text → Image. Here, the ground-truth relevant samples refer to the cross-modal samples which have the same semantic
category as the query sample. To evaluate the cross-modal retrieval results, the retrieval protocols adopt the same way in [17]
that we measure the accuracy scores of the Hamming ranking results by Mean Average Precision (MAP), which returns the
mean value of average precision scores for each query sample. In our experiments, we take MAP@ALL where all MAP
scores are calculated on all retrieval results returned by tested methods. For RML+UCCH and RML+NRCH, to facilitate a
fair comparison, we took the source code of UCCH and NRCH and inserted our RML module into them without introducing
unnecessary changes. Since NRCH has different settings in data partitioning and pre-processing from UCCH, we treat NRCH
and RML+NRCH as another set of comparison.

2.3. Dataset details
As we highly expect a MVL method which is compatible with various multi-view datasets, we conducted experiments on
multiple types of multi-view or multimodal datasets to validate the effectiveness and universality of methods. We provide the
detailed information of datasets as follow:
• DHA [23] is a repository documenting the intricacies of human motion, which captures RGB and depth image sequences

as two views for each sample. Spanning across 23 unique categories, this multimodal dataset serves as a resource for the
in-depth research of human motion.

• BDGP [6] comprises 2,500 samples of drosophila embryos which are categorized into 5 different classes. For each sample,
two views of features have been extracted, including a 1,750-dimensional visual feature and a 79-dimensional textual feature.

• Prokaryotic [5] is a bioinformatics dataset that collects 551 prokaryotic species with three views. The dataset provides
4 species, described by textual features in the bag-of-words format, proteome compositions encoded by the frequency of
amino acids, and gene repertoires using presence/absence indicators for gene families.

• Cora [4] consists of 2,708 scientific documents published over 7 topics, such as neural networks, reinforcement learning, and
theory. Each document has a content-citation pair, that is 1,433-dimensional word content information and 2,708-dimensional
citation information.

• YoutubeVideo [28] is a large-scale multi-view dataset with 101,499 samples from 31 classes, in which 512-dimensional
cuboids histogram, 647-dimensional HOG, and 838-dimensional MISC vision features are leveraged to describe video data
collected from the YouTube website.

• WebKB [40] is a dataset about web page information collected from the computer science departments of various universities.
It comprises 1,051 samples belonging to course or non-course pages, and each sample has a fulltext view and an inlink view
in web pages.

• VOC [9] consists of image-text pairs to form a two-modality dataset, with 5,649 instances across 20 categories. For each
sample, the first modality is represented by 512-dimensional image GIST features, while the second modality is characterized
by a word frequency count of 399-dimensional features.

• NGs [19] is a subset of the newsgroup dataset, consisting of 500 newsgroup documents and 5 categories. Each document
has three views obtained through pre-processing methods, i.e., supervised mutual information, partitioning around medoids,
and unsupervised mutual information.

• Cifar100 [22] is a popular image database with 50,000 samples from 100 subcategories. We follow [25] that extracts the
image features through ResNet18, ResNet50, and DenseNet121 to construct three views, respectively.

• MIRFLICKR-25K [18] and NUS-WIDE [36] are two image-text datasets widely-used for cross-modal retrieval tasks
(including image-to-text retrieval and text-to-image retrieval). We follow the setting in [17] to ensure a fair comparison
as follows. For MIRFLICKR-25K, 18,015 image-text pairs are randomly selected as the retrieval set and the left 2,000
pairs are used as the query set, where each sample is with multiple labels from 24 semantic categories. The pretrained
19-layer VGGNet extracts the 4,096-dimensional image features and the bag-of-words (BoW) obtains 1,386-dimensional
text features. For NUS-WIDE, 184,457 image-text pairs are randomly selected as the retrieval set and the remaining 2,100
pairs are the query set, belonging to 10 classes. Each pair is represented by the 4,096-dimensional VGGNet image features
and 1,000-dimensional BoW text features.

3. More Experimental Results
In this appendix, we provide more experimental results to support our claims in this paper.

For noise-label multi-view classification task, Table 1 shows the results on different noise rates which further indicate the
effectiveness of our RML to improve the robustness against noise labels. We provide the mean values of five independent runs
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of comparison experiments as well as the corresponding standard deviation in the following Tables 2, 3, and 4. The results
indicate that the improvement achieved by our method is significant.

Table 1. Performance comparison on noise-label multi-view classification

Method DHA BDGP Prokaryotic Cora YoutubeVideo
ACC Pre. F1 ACC Pre. F1 ACC Pre. F1 ACC Pre. F1 ACC Pre. F1

noise label rate is 0%
Trans.+LCE 0.789 0.829 0.792 0.967 0.968 0.967 0.836 0.841 0.837 0.828 0.828 0.827 0.473 0.740 0.387
Trans.+LMCE 0.788 0.819 0.788 0.903 0.905 0.903 0.842 0.850 0.844 0.778 0.780 0.778 0.648 0.711 0.602
RML+LCE 0.712 0.815 0.670 0.959 0.959 0.959 0.854 0.860 0.855 0.772 0.775 0.767 0.759 0.761 0.758
RML+LMCE 0.796 0.836 0.795 0.957 0.958 0.957 0.852 0.856 0.853 0.822 0.828 0.821 0.773 0.774 0.773

noise label rate is 10%
Trans.+LCE 0.724 0.770 0.723 0.845 0.847 0.845 0.766 0.778 0.770 0.753 0.754 0.753 0.471 0.725 0.387
Trans.+LMCE 0.723 0.764 0.719 0.789 0.793 0.789 0.769 0.780 0.772 0.720 0.724 0.719 0.440 0.762 0.339
RML+LCE 0.688 0.805 0.640 0.950 0.951 0.950 0.795 0.816 0.801 0.764 0.767 0.756 0.754 0.754 0.753
RML+LMCE 0.727 0.798 0.710 0.867 0.868 0.867 0.776 0.796 0.782 0.792 0.797 0.788 0.766 0.767 0.765

noise label rate is 30%
Trans.+LCE 0.626 0.676 0.619 0.605 0.605 0.603 0.636 0.680 0.648 0.577 0.592 0.580 0.268 0.804 0.113
Trans.+LMCE 0.618 0.656 0.609 0.600 0.605 0.599 0.617 0.687 0.636 0.548 0.564 0.551 0.475 0.706 0.406
RML+LCE 0.622 0.773 0.568 0.938 0.938 0.938 0.769 0.807 0.778 0.665 0.673 0.658 0.590 0.640 0.580
RML+LMCE 0.623 0.773 0.570 0.938 0.939 0.938 0.767 0.807 0.777 0.668 0.678 0.663 0.600 0.645 0.593

noise label rate is 50%
Trans.+LCE 0.457 0.487 0.448 0.437 0.441 0.435 0.473 0.594 0.505 0.400 0.432 0.407 0.266 0.804 0.112
Trans.+LMCE 0.470 0.519 0.467 0.442 0.446 0.441 0.472 0.606 0.505 0.374 0.413 0.382 0.267 0.805 0.112
RML+LCE 0.608 0.736 0.563 0.933 0.933 0.933 0.735 0.783 0.747 0.664 0.669 0.648 0.592 0.634 0.584
RML+LMCE 0.610 0.737 0.565 0.936 0.936 0.936 0.735 0.783 0.747 0.665 0.666 0.651 0.598 0.639 0.593

noise label rate is 70%
Trans.+LCE 0.273 0.309 0.259 0.256 0.259 0.255 0.301 0.477 0.340 0.269 0.324 0.282 0.261 0.637 0.172
Trans.+LMCE 0.254 0.275 0.242 0.249 0.252 0.249 0.296 0.470 0.336 0.259 0.305 0.271 0.259 0.512 0.205
RML+LCE 0.421 0.649 0.330 0.886 0.890 0.885 0.402 0.547 0.437 0.600 0.630 0.591 0.586 0.623 0.580
RML+LMCE 0.422 0.650 0.331 0.883 0.887 0.881 0.408 0.551 0.443 0.603 0.622 0.595 0.587 0.626 0.580

Table 2. Performance comparison of unsupervised multi-view clustering on multi-view datasets (mean ± std)

Method DHA BDGP Prokaryotic Cora YoutubeVideo
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

K-means 0.656±0.029 0.798±0.001 0.443±0.029 0.573±0.041 0.562±0.022 0.325±0.006 0.363±0.041 0.172±0.043 0.199±0.002 0.194±0.001
MCN 0.758±0.021 0.800±0.017 0.957±0.026 0.901±0.041 0.528±0.025 0.287±0.014 0.386±0.017 0.184±0.032 0.183±0.002 0.187±0.001
CPSPAN 0.663±0.033 0.775±0.010 0.690±0.087 0.636±0.077 0.539±0.031 0.229±0.023 0.419±0.030 0.190±0.007 0.232±0.014 0.221±0.013
CVCL 0.662±0.063 0.754±0.033 0.907±0.078 0.785±0.009 0.526±0.049 0.281±0.032 0.483±0.007 0.310±0.003 0.273±0.005 0.258±0.002
DSIMVC 0.635±0.046 0.778±0.043 0.983±0.003 0.944±0.007 0.597±0.017 0.318±0.014 0.478±0.037 0.353±0.038 0.189±0.003 0.188±0.001
DSMVC 0.762±0.013 0.836±0.008 0.523±0.079 0.396±0.010 0.502±0.063 0.258±0.040 0.447±0.041 0.308±0.026 0.178±0.002 0.180±0.001
MFLVC 0.716±0.011 0.812±0.004 0.983±0.012 0.951±0.005 0.569±0.034 0.316±0.023 0.485±0.041 0.351±0.024 0.184±0.002 0.186±0.002
SCM 0.814±0.021 0.840±0.041 0.962±0.003 0.885±0.027 0.550±0.030 0.278±0.020 0.564±0.020 0.378±0.008 0.316±0.007 0.313±0.003
SCMRE 0.804±0.001 0.840±0.001 0.971±0.004 0.913±0.002 0.582±0.037 0.312±0.028 0.574±0.008 0.374±0.009 0.317±0.001 0.322±0.004
RML+K-means 0.822±0.012 0.847±0.005 0.981±0.004 0.941±0.009 0.605±0.013 0.316±0.014 0.570±0.029 0.371±0.011 0.331±0.004 0.339±0.003

Table 3. Performance comparison of unsupervised multi-view clustering on multi-view datasets (mean ± std)

Method WebKB VOC NGs Cifar100
ACC NMI ACC NMI ACC NMI ACC NMI

K-means 0.617±0.008 0.002±0.001 0.487±0.008 0.360±0.020 0.206±0.002 0.019±0.003 0.975±0.006 0.996±0.001
MCN 0.636±0.002 0.081±0.002 0.274±0.035 0.286±0.011 0.886±0.006 0.736±0.002 0.864±0.023 0.962±0.001
CPSPAN 0.771±0.021 0.166±0.042 0.452±0.022 0.488±0.017 0.352±0.002 0.215±0.015 0.918±0.014 0.982±0.002
CVCL 0.741±0.030 0.246±0.026 0.315±0.041 0.317±0.026 0.568±0.077 0.317±0.078 0.956±0.003 0.977±0.001
DSIMVC 0.702±0.014 0.250±0.013 0.212±0.017 0.204±0.011 0.630±0.062 0.502±0.059 0.895±0.011 0.969±0.005
DSMVC 0.663±0.018 0.134±0.012 0.633±0.034 0.723±0.041 0.352±0.027 0.082±0.013 0.851±0.023 0.959±0.007
MFLVC 0.672±0.021 0.245±0.014 0.292±0.004 0.280±0.001 0.908±0.000 0.802±0.000 0.877±0.018 0.964±0.009
SCM 0.689±0.017 0.094±0.021 0.607±0.046 0.622±0.043 0.968±0.004 0.900±0.012 0.999±0.001 0.999±0.000
SCMRE 0.725±0.024 0.268±0.052 0.629±0.001 0.629±0.011 0.965±0.001 0.893±0.001 0.999±0.000 0.999±0.000
RML+K-means 0.868±0.079 0.508±0.156 0.656±0.031 0.615±0.011 0.983±0.007 0.943±0.022 0.999±0.000 0.999±0.000

Regarding hyper-parameter λ, we consider noise-label multi-view classification and cross-modal hashing retrieval tasks,
where LRML is treated as a regularization term weighted by λ. The parameter analysis with the noise label rate of 50% is
shown in Figure 1, where we observe stable classification performance within the range of [101, 102, 103]. For the noise-label
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Table 4. Performance comparison on noise-label multi-view classification (mean ± std)

Method DHA BDGP Prokaryotic Cora YoutubeVideo
ACC Pre. F1 ACC Pre. F1 ACC Pre. F1 ACC Pre. F1 ACC Pre. F1

noise label rate is 0%
Trans.+LCE 0.789±0.023 0.829±0.025 0.792±0.025 0.967±0.013 0.968±0.013 0.967±0.014 0.836±0.013 0.841±0.008 0.837±0.011 0.828±0.006 0.828±0.005 0.827±0.006 0.473±0.170 0.740±0.054 0.387±0.225
Trans.+LMCE 0.788±0.034 0.819±0.037 0.788±0.035 0.903±0.010 0.905±0.010 0.903±0.010 0.842±0.019 0.850±0.014 0.844±0.017 0.778±0.009 0.780±0.009 0.778±0.009 0.648±0.020 0.711±0.007 0.602±0.028
RML+LCE 0.712±0.036 0.815±0.031 0.670±0.047 0.959±0.006 0.959±0.006 0.959±0.006 0.854±0.025 0.860±0.018 0.855±0.023 0.772±0.012 0.775±0.012 0.767±0.015 0.759±0.003 0.761±0.003 0.758±0.003
RML+LMCE 0.796±0.027 0.836±0.020 0.795±0.028 0.957±0.007 0.958±0.007 0.957±0.007 0.852±0.022 0.856±0.016 0.853±0.020 0.822±0.016 0.828±0.014 0.821±0.017 0.773±0.002 0.774±0.003 0.773±0.002

noise label rate is 10%
Trans.+LCE 0.724±0.036 0.770±0.027 0.723±0.042 0.845±0.022 0.847±0.021 0.845±0.022 0.766±0.023 0.778±0.017 0.770±0.021 0.753±0.015 0.754±0.016 0.753±0.015 0.471±0.167 0.725±0.065 0.387±0.224
Trans.+LMCE 0.723±0.027 0.764±0.022 0.719±0.033 0.789±0.018 0.793±0.018 0.789±0.018 0.769±0.021 0.780±0.017 0.772±0.019 0.720±0.014 0.724±0.015 0.719±0.015 0.440±0.201 0.762±0.050 0.339±0.263
RML+LCE 0.688±0.031 0.805±0.036 0.640±0.045 0.950±0.013 0.951±0.013 0.950±0.013 0.795±0.021 0.816±0.010 0.801±0.017 0.764±0.006 0.767±0.008 0.756±0.013 0.754±0.006 0.754±0.006 0.753±0.006
RML+LMCE 0.727±0.027 0.798±0.037 0.710±0.043 0.867±0.023 0.868±0.024 0.867±0.024 0.776±0.013 0.796±0.004 0.782±0.010 0.792±0.021 0.797±0.023 0.788±0.027 0.766±0.003 0.767±0.003 0.765±0.003

noise label rate is 30%
Trans.+LCE 0.626±0.073 0.676±0.075 0.619±0.074 0.605±0.021 0.605±0.016 0.603±0.018 0.636±0.045 0.680±0.034 0.648±0.041 0.577±0.017 0.592±0.013 0.580±0.016 0.268±0.001 0.804±0.001 0.113±0.001
Trans.+LMCE 0.618±0.044 0.656±0.043 0.609±0.044 0.600±0.039 0.605±0.038 0.599±0.039 0.617±0.047 0.687±0.047 0.636±0.045 0.548±0.015 0.564±0.016 0.551±0.015 0.475±0.171 0.706±0.081 0.406±0.241
RML+LCE 0.622±0.009 0.773±0.023 0.568±0.019 0.938±0.008 0.938±0.007 0.938±0.008 0.769±0.035 0.807±0.022 0.778±0.032 0.665±0.015 0.673±0.020 0.658±0.017 0.590±0.014 0.640±0.003 0.580±0.020
RML+LMCE 0.623±0.010 0.773±0.022 0.570±0.023 0.938±0.006 0.939±0.006 0.938±0.006 0.767±0.035 0.807±0.022 0.777±0.031 0.668±0.014 0.678±0.016 0.663±0.015 0.600±0.007 0.645±0.007 0.593±0.013

noise label rate is 50%
Trans.+LCE 0.457±0.065 0.487±0.077 0.448±0.073 0.437±0.025 0.441±0.027 0.435±0.024 0.473±0.052 0.594±0.026 0.505±0.043 0.400±0.016 0.432±0.016 0.407±0.017 0.266±0.001 0.804±0.001 0.112±0.001
Trans.+LMCE 0.470±0.043 0.519±0.033 0.467±0.043 0.442±0.026 0.446±0.028 0.441±0.027 0.472±0.048 0.606±0.037 0.505±0.040 0.374±0.012 0.413±0.015 0.382±0.011 0.267±0.002 0.805±0.001 0.112±0.001
RML+LCE 0.608±0.027 0.736±0.022 0.563±0.035 0.933±0.014 0.933±0.013 0.933±0.014 0.735±0.019 0.783±0.020 0.747±0.018 0.664±0.011 0.669±0.013 0.648±0.012 0.592±0.005 0.634±0.005 0.584±0.010
RML+LMCE 0.610±0.029 0.737±0.025 0.565±0.038 0.936±0.009 0.936±0.008 0.936±0.009 0.735±0.019 0.783±0.020 0.747±0.018 0.665±0.014 0.666±0.019 0.651±0.013 0.598±0.004 0.639±0.007 0.593±0.007

noise label rate is 70%
Trans.+LCE 0.273±0.049 0.309±0.059 0.259±0.050 0.256±0.021 0.259±0.022 0.255±0.021 0.301±0.035 0.477±0.038 0.340±0.032 0.269±0.010 0.324±0.016 0.282±0.010 0.261±0.006 0.637±0.206 0.172±0.074
Trans.+LMCE 0.254±0.060 0.275±0.072 0.242±0.061 0.249±0.016 0.252±0.019 0.249±0.018 0.296±0.018 0.470±0.016 0.336±0.013 0.259±0.008 0.305±0.014 0.271±0.008 0.259±0.007 0.512±0.239 0.205±0.076
RML+LCE 0.421±0.017 0.649±0.030 0.330±0.028 0.886±0.041 0.890±0.042 0.885±0.044 0.402±0.040 0.547±0.051 0.437±0.035 0.600±0.017 0.630±0.023 0.591±0.014 0.586±0.007 0.623±0.004 0.580±0.012
RML+LMCE 0.422±0.015 0.650±0.030 0.331±0.028 0.883±0.051 0.887±0.052 0.881±0.054 0.408±0.038 0.551±0.050 0.443±0.033 0.603±0.011 0.622±0.019 0.595±0.014 0.587±0.005 0.626±0.007 0.580±0.010

multi-view classification task, λ is set to 103 to emphasize LRML in joint optimization when the noise label rates are large
(e.g., 30%, 50%, 70%). When the noise label rates are small (e.g., 0%, 10%), λ is set to 100 for recommended settings. For
the cross-modal hashing retrieval tasks, stable performance is observed within the range of [10−3, 10−2, 10−1] as shown in
Figure 2. On cross-modal retrieval datasets MIRFLICKR-25K and NUS-WIDE, we kept λ unchanged in our comparison
experiments (i.e., λ = 10−1).

(a) ACC (b) Pre. (c) F1

Figure 1. The hyper-parameter analysis of λ over three metrics on noise-label multi-view classification with the noise label rate of 50%.

(a) MIRFLICKR-25K (image-to-text) (b) MIRFLICKR-25K (text-to-image) (c) NUS-WIDE (image-to-text) (d) NUS-WIDE (text-to-image)

Figure 2. The hyper-parameter analysis of λ on cross-modal hashing retrieval tasks over hash code lengths of [16, 32, 64, 128], including
image-to-text retrieval (a,c) and text-to-image retrieval (b,d) on datasets MIRFLICKR-25K and NUS-WIDE.

Figure 3 and Figure 4 provide additional visualization results on more datasets that are unable to be shown in the main
paper due to space limitations.
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(a) p vs. ACC (b) p vs. NMI (c) r vs. ACC (d) r vs. NMI

Figure 3. Hyper-parameter analysis of the different ratios in our proposed simulated perturbation based multi-view contrastive learning on
unsupervised multi-view clustering tasks, including noise perturbation (a-b) and unusable perturbation (c-d).

(a) DHA (b) BDGP (c) Prokaryotic (d) Cora (e) YoutubeVideo

Figure 4. The training loss values during our proposed simulated perturbation based multi-view contrastive learning, indicating that RML
has well-converged optimization objective even with different perturbation ratios (25%, 50%, 75%).

4. Potential Negative Societal Impacts

In this paper, we propose a robust multi-view learning method, which works in the field of fundamental machine learning and
computer vision algorithms. It will not produce new negative societal impacts beyond what we already know.
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