
Training-Free Industrial Defect Generation with Diffusion Models

Supplementary Material

1. Data Augmentation Strategies
The authenticity of a synthetic defect is determined by both
the visual property of the defect and its location. For in-
stance, the defect type ”thread top” of screws will appear
exclusively on the body of a screw and not appear on the
screw tip or head. Enhancing defect diversity while preserv-
ing authentic consistency becomes a key challenge in data
augmentation during defect generation. To address this, we
predefined the object areas where each anomaly type could
possibly occur and randomly placed augmented real masks
within these regions. The augmentation process involves
random scaling, translation, and rotation of the masks, en-
suring expanded seen defect distribution without compro-
mising the semantic relevance of their positions.

2. Experiments
2.1. Ablation study
Impact of the number of generated anomalies. We pro-
vide an ablation study of generated abnormal ratios as
shown in Tab. 1. We investigate the impact of different num-
bers of synthetic samples on model performances under the
general setting. When N < 500, the increasing number of
generated anomalies can provide the model with more di-
verse training data, thus enhancing the performance. How-
ever, an excessive number of generated samples may lead to
over-fitting to specific patterns, reducing the model’s ability
to generalize on real anomalies. To reach a balance between
model performance and the cost of image generation, we se-
lect N = 500 as the optimal threshold.
Hyperparameter sensitivity. We conduct sensitivity anal-
ysis in Tab. 2 by varying guidance strength η, AAM thresh-
old τ = mean(Dmap

t ) + k · std(Dmap
t ), guidance step Tn,

and TP activation step Ti on carpet (MVTec AD). The
results indicate that our default settings (bolded in the ta-
ble) provide a favorable balance between stability and fi-
delity. For instance, η = 0.04 achieves the best overall
performance, while excessively large values of η introduce
instability and degrade both Local IS and PRO. Similarly,
k = 0.2 yields consistent improvements, whereas higher
values cause overactivation of anomaly regions, adversely
affecting spatial precision and leading to misalignment. For
the guidance step Tn, setting it to 30 results in optimal trade-
offs. Increasing Tn beyond this point tends to disrupt back-
ground recovery, reducing overall image coherence. Re-
garding Ti, early or delayed activation of the texture preser-
vation module has marginal but observable effects on de-
fect localization. Notably, Ti = 10 slightly boosts PRO but
compromises overall alignment.

N i-AUROC i-AP p-AUROC p-AP Acc

100 99.0 99.6 98.4 78.0 76.8
300 99.2 99.7 98.7 83.2 79.1
500 99.6 99.8 99.1 84.1 79.8
800 99.2 99.6 98.9 82.6 78.0

Table 1. Impact of the number of generated anomalies.

Parameter setting Local IS ↑ I-AUC ↑ PRO ↑

η = 0.02 2.92 96.9 92.8
η = 0.04 (default) 3.12 98.9 96.2
η = 0.06 3.03 98.6 94.5
η = 0.08 2.90 93.0 87.5

k = 0.0 3.03 95.3 94.9
k = 0.2 (default) 3.12 98.9 96.2
k = 0.4 3.00 99.1 95.7
k = 0.6 2.99 91.9 90.9

Tn = 20 3.03 96.5 95.3
Tn = 30 (default) 3.12 98.9 96.2
Tn = 40 2.88 97.9 94.9
Tn = 50 3.00 94.5 94.3

Ti = 10 2.97 95.7 96.7
Ti = 25 (default) 3.12 98.9 96.2
Ti = 40 2.94 97.2 94.4

Table 2. Ablation study on hyperparameter sensitivity.

2.2. Resource requirement
We perform inference on a single NVIDIA GeForce RTX
3090 24GB GPU, and our experiments demonstrate that
our approach is highly resource-efficient. As detailed in
Tab. 3, we compare the computational and time costs of
mainstream methods. Despite our model’s parameter count
not being optimal, it requires no additional training for
each anomaly type. This unified training approach dra-
matically reduces overall training time compared to meth-
ods like DFMGAN (621 hours) and AnoDiff (390 hours).
Moreover, as illustrated in Figure 1, our method exhibits
excellent scalability as the number of object categories in-
creases. Both DFMGAN and AnoDiff require retraining or
heavy fine-tuning per object type, resulting in a steep lin-
ear growth in total generation time. In contrast, our method
incurs only a marginal overhead relative to the AnyDoor
baseline. Owing to its training-free design and one-shot
generalization capability, it exhibits a consistently stable
computational cost as the number of object categories in-
creases, demonstrating superior scalability and deployment
efficiency in industrial scenarios.

2.3. Extended Application.
In addition to generating defects corresponding to specific
object defect types based on real anomalies, our model



Figure 1. Total generation time on MVTec AD.

Model Traning time Model size Inference time

DFMGAN 621h 26906M 0.9s
AnoDiff 390h 7240M 20s

Ours 0h 15415M 22s

Table 3. Resource requirement from DFMGAN, AnoDiff and our
model on MVTec AD dataset.

demonstrates more comprehensive applicability in practical
scenarios. As presented in Fig. 2, the first column on the
left side of each section denotes the reference anomalous
samples, while the right side displays the outputs generated
from various masks.
Cross-object transfer. As shown in Fig. 2(a), our pipeline
supports cross-object transfer—transferring defects from
one object to another material while achieving seamless
background coherence and visual alignment. This capabil-
ity is particularly promising for tasks in open-set anomaly
detection. To further assess the adaptability of our method,
we explore its qualitative performance in anomaly transfer,
where a hole defect from wood is transferred between dif-
ferent objects while preserving structural integrity and re-
alistic textures of the target object background. As shown
in Tab. 4, our method consistently outperforms Crop-Paste
and AnoDiff. For hole transfer on carpet, it improves Pro
by 10.92% over AnoDiff, while for hazelnut, it achieves a
2.82% gain. These results highlight our method’s potential
for open-set anomaly detection, effectively synthesizing de-
fects across diverse objects while preserving structural in-
tegrity and background coherence.
One anomaly with more mask. We also recognize that the
one-shot setting, relying on a single pair of a real anomaly
and its corresponding mask, methodologically limits the
diversity of the generated anomalies. Building on this
perspective, we explore a novel application that enhances
model performance by increasing mask diversity while
still using only one anomalous sample. As illustrated in
Fig. 2(b), additional masks can be conveniently provided
through user input. Even with just one real anomaly sample,
Our method also significantly enhances the performance of

(a) Quantitative of cross-object transfer  (b) Quantitative of one anomaly with more masks

Figure 2. Quantitative examples of extended application.

Defect Method i-AUROC p-AUROC Pro

Hole transfer on carpet
Crop-Paste 99.40 96.47 90.64

AnoDiff 96.43 96.65 86.98
Ours 100 99.72 97.90

Hole transfer on hazenut
Crop-Paste 99.37 94.47 85.75

AnoDiff 99.16 96.69 94.41
Ours 100 99.60 97.23

Table 4. Results of anomaly transfer using one anomaly sample.

Setting i-AUROC i-AP p-AUROC p-AP Acc

one-shot real masks 88.0 94.0 96.7 32.2 54.3
five-shot real masks 96.9 97.6 97.8 40.3 85.3

one anomaly with five masks 90.4 95.3 97.7 42.7 82.5

Table 5. Results of generating Screw defects in MVTec AD using
one anomaly sample and five masks.

anomaly visual tasks, particularly in the localization and
classification sub-tasks ( Tab. 5 illustrates an example with
screws), with scores closely aligning with the five ground
truth masks. This demonstrates that our model can achieve
high-quality and diverse anomaly generation, even in con-
ditions with limited anomaly samples, which is highly ap-
plicable to real industrial needs.

2.4. More Quantitative Experiments
In this section, we present more comprehensive quantitative
results derived from the experiments in our main paper.
Comparision with unsupervised method. In Section 5.3
of the main paper, we integrated our approach with state-
of-the-art, lightweight anomaly detection models to con-
duct comparative experiments. Table 7 illustrates the per-
formance of our method in a one-to-one model frame-
work, where we compare SimpleNet [7], GLAD [8],
and GLASS [1]. The results clearly indicate that our
method, when combined with GLASS, achieves the high-
est performance across all metrics, especially on VisA,
where it marks an improvement of +0.7% in Pro over
GLASS. Furthermore, Table 6 reports the evaluation re-
sults for a unified multi-class model, where we compare
UniAD [9], DiAD [4], DeSTSeg [10], MambaAD [5], and
SimpleNet [7] (trained in a multi-class setting). With the
lightweight backbone as UniAD (24.5M parameters, 3.6G
FLOPs), our approach improves image-level F1-max by



Method Params FLOPs MVTec AD VisA
I-AUC I-AP I-F1-max P-AUC P-AP P-F1-max Pro I-AUC I-AP I-F1-max P-AUC P-AP P-F1-max Pro

UniAD [9] 24.5M 3.6G 96.5 98.8 96.2 96.8 43.4 49.5 90.7 88.8 90.8 85.8 98.3 33.7 39.0 85.5
SimpleNet [7] 72.8M 16.1G 95.3 98.4 95.8 96.9 45.9 49.7 86.5 87.2 87.0 81.8 96.8 34.7 37.8 81.4

DiAD [4] 1525M 451.5G 97.2 99.0 96.5 96.8 52.6 55.5 90.7 86.8 88.3 85.1 96.0 26.1 33.0 75.2
DeSTSeg [10] 35.2M 122.7G 89.2 95.5 91.6 93.1 54.3 50.9 64.8 88.9 89.0 85.2 96.1 39.6 43.4 67.4
MambaAD [5] 25.7M 8.3G 98.6 99.6 97.8 97.7 56.4 59.2 93.1 94.3 94.5 89.4 98.5 39.4 44.0 91.0
Ours + UniAD 24.5M 3.6G 98.9 99.7 98.1 97.1 45.2 50.9 91.1 94.3 95.9 90.4 98.6 34.1 39.1 86.9

Table 6. Quantitative Results on MVTec AD and VisA for unified model between our method and SOTA methods.
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Figure 3. Selected generation qualitative results on MVTec AD.

Method MVTec AD VisA
i-AUC p-AUC Pro i-AUC p-AUC Pro

SimpleNet [7] 99.5 98.1 90.0 97.1 98.2 90.7
GLAD [8] 99.3 98.6 95.2 99.5 98.6 94.3
GLASS [1] 99.9 99.3 96.8 98.8 98.8 92.2

Ours + GLASS 99.9 99.4 97.2 99.5 98.9 95.3

Table 7. Quantitative Results on MVTec AD and VisA for one-to-
one model between our method and SOTA methods.

+0.3% on MVTec AD, and achieves a +1.4% improve-
ment in image-level AP on VisA. Importantly, these im-
provements are achieved without adding model complex-
ity, as our FLOPs remain at just 43% of those required
by MambaAD. These comparisons demonstrate that the
images generated by our approach can be effectively ap-
plied to lightweight segmentation models, enhancing their
performance while maintaining computational efficiency.
This highlights the potential of our method in resource-
constrained industrial anomaly detection scenarios.
Comparision with generated method. We present the de-
tailed quantitative results of our method compared to repre-
sentative generative approaches on the anomaly inspection
downstream task for each category in the dataset. Tab. 8

Category DFMGAN AnoDiff Ours Ours(one-shot)
AUC AP F1-max AUC AP F1-max AUC AP F1-max AUC AP F1-max

bottle 99.3 99.8 97.7 99.8 99.9 98.9 99.9 99.9 98.9 99.7 99.8 98.8
cable 95.9 97.8 93.8 100 100 100 99.0 99.1 95.5 98.3 98.4 94.0

capsule 92.8 98.5 94.5 99.7 99.9 98.7 98.7 99.6 97.3 96.4 99.0 94.8
carpet 67.9 87.9 87.3 96.7 98.8 94.3 98.9 99.6 98.4 97.5 99.0 96.7
grid 73.0 90.4 85.4 98.4 99.5 98.7 100 100 100 100 100 100

hazelnut 99.9 100 99.9 99.8 99.9 98.9 99.9 99.9 99.9 99.9 100 99.0
leather 99.9 100 99.2 100 100 100 100 100 100 100 100 100

metal nut 99.3 99.8 99.2 100 100 100 100 100 100 100 100 100
pill 68.7 91.7 91.4 98.0 99.6 97.0 99.2 99.8 97.9 98.6 99.6 96.9

screw 22.3 64.7 85.3 96.8 97.9 95.5 98.8 99.4 95.8 90.7 95.2 90.1
tile 100 100 100 100 100 100 100 100 100 100 100 100

toothbrush 100 100 100 100 100 100 100 100 100 94.2 96.5 92.3
transistor 90.8 92.5 88.9 100 100 100 100 100 100 98.0 97.1 94.3

wood 98.4 99.4 98.8 98.4 99.4 98.8 100 100 100 99.4 99.7 98.8
zipper 99.7 99.9 99.4 99.9 100 99.4 100 100 100 100 100 100

Average 87.2 94.8 94.7 99.2 99.7 98.7 99.6 99.8 98.8 98.2 99.0 97.1

Table 8. Comparison of anomaly detection on MVTec AD by
training a U-Net on the generated data.

and Tab. 9 report the results on MVTec AD, while Tab. 10
and Tab. 11 present the results on VisA.

2.5. More Qualitative Experiments
Qualitative examples of generation. Fig. 3 and Fig. 4
presents the defect generation results for all objects in
MVTec AD and VisA datasets across various methods.
DFMGAN [2] struggles to fully capture the appearance of
complex objects, often producing highly distorted images
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Figure 4. Selected generation qualitative results on VisA.
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Figure 5. Selected localization qualitative results on MVTec AD.

that fail to preserve structural integrity. Additionally, it can-
not guarantee alignment between the generated anomalies
and their corresponding masks. The state-of-the-art An-
oDiff [6] encounters difficulties when handling small de-
fects and intricate objects, such as the transistors and bulbs
on PCBs. AnoGen [3], which generates anomalies us-
ing bounding box masks, achieves notable improvements
in blending defects with the background. However, it fre-
quently introduces artifacts in the defective regions. Mean-
while, the training-free method DIAG [6], which employs
text prompts to generate anomalies, produces defects that
significantly deviate from real-world characteristics, failing
to align with the semantic nature of industrial anomalies.
In contrast, our approach excels in generating precise tiny

defects while maintaining accurate mask alignment.

Qualitative examples of localization. Fig. 5 and Fig. 6 il-
lustrates the qualitative results by generating a heatmap for
suspicious regions on MVTec AD and VisA datasets. The
first two columns exhibit the abnormal images and their
corresponding ground truth, while the remaining columns
present the predictions of different methods, including Any-
door, AnoDiff, and our TF-IDG. Notably, the detection
model trained on images produced by Anydoor struggles to
discern defects that closely resemble the background, such
as missing wires in cables, cracks in bottles, chunk in can-
dle, or same color spot in cashew. AnoDiff demonstrates
low sensitivity to minor defects, such as those found in
wood, screws or PCB. In contrast to the abovementioned
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Figure 6. Selected localization qualitative results on VisA.

Category
DFMGAN AnoDiff Ours Ours(one-shot)

AUC AP F1-max AUC AP F1-max AUC AP F1-max AUC AP F1-max

bottle 98.9 90.2 83.9 99.4 94.1 87.3 99.3 88.0 79.9 98.0 89.8 83.4

cable 97.2 81.0 75.4 99.2 90.8 83.5 98.1 81.3 75.7 95.8 73.0 68.4

capsule 79.2 26.0 35.0 98.8 57.2 59.8 98.2 53.9 58.2 98.0 57.7 57.5

carpet 90.6 33.4 38.1 98.6 81.2 74.6 99.0 86.1 78.9 98.7 85.4 78.6

grid 75.2 14.3 20.5 98.3 52.9 54.6 99.6 69.4 64.0 99.5 63.8 61.3

hazelnut 99.7 95.2 89.5 99.8 96.5 90.6 98.8 85.2 79.0 96.5 70.9 71.8

leather 98.5 68.7 66.7 99.8 79.6 71.0 99.8 82.1 75.3 99.8 82.7 74.4

metal nut 99.3 98.1 94.5 99.8 98.7 94.0 98.9 94.8 88.9 98.9 95.2 88.3

pill 81.2 67.8 72.6 99.8 97.0 90.8 99.5 93.8 86.3 98.8 91.3 85.2

screw 58.8 2.20 5.30 97.0 51.8 50.9 99.2 79.6 74.1 96.2 19.9 27.1

tile 99.5 97.1 91.6 99.2 93.9 86.2 99.5 94.6 86.5 99.0 93.1 86.5

toothbrush 96.4 75.9 72.6 99.2 76.5 73.4 99.8 92.8 86.0 92.4 33.2 38.6

transistor 96.2 81.2 77.0 99.3 92.6 85.7 99.1 89.2 85.9 95.3 79.0 75.1

wood 95.3 70.7 65.8 98.9 84.6 74.5 98.5 82.8 75.4 94.8 75.3 70.5

zipper 92.9 65.6 64.9 99.4 86.0 79.2 99.2 88.3 80.9 99.3 88.3 80.9

Average 90.0 62.7 62.1 99.1 81.4 76.3 99.1 84.1 78.3 97.4 73.2 69.8

Table 9. Comparison of anomaly localization on MVTec AD by
training a U-Net on the generated data.

Category DFMGAN AnoDiff Ours Ours (one-shot)
AUC AP F1-max AUC AP F1-max AUC AP F1-max AUC AP F1-max

candle 83.4 15.5 25.4 96.9 28.8 34.5 98.8 47.5 46.5 98.8 48.7 47.9
capsules 60.0 1.5 5.3 97.2 56.4 57.9 99.1 74.8 71.2 98.9 69.5 67.7
cashew 88.6 5.0 9.6 99.4 87.9 84.3 98.0 74.8 71.3 96.1 19.0 25.6

chewinggum 98.5 82.4 75.9 98.1 58.5 57.5 99.5 85.7 78.9 99.7 85.1 77.2
fryum 93.0 23.1 29.5 98.4 65.7 64.1 96.3 47.4 49.5 95.2 39.2 42.8

macaroni1 93.4 21.5 30.3 94.1 5.4 15.3 99.5 49.2 52.6 99.4 28.5 38.1
macaroni2 94.2 1.6 3.9 92.3 0.1 0.3 99.1 37.9 42.5 98.9 30.7 35.7

pcb1 84.4 34.9 40.3 96.0 68.1 70.0 92.0 67.1 69.9 94.9 37.9 42.4
pcb2 91.6 27.0 37.4 95.2 21.5 29.0 95.8 54.7 56.1 97.5 42.4 51.6
pcb3 81.9 7.8 16.8 97.5 27.9 33.6 95.3 57.7 58.3 92.0 45.5 47.8
pcb4 95.2 44.5 47.2 98.9 60.2 56.9 98.2 41.5 43.0 96.7 35.0 43.4

pipe fryum 90.5 17.8 25.1 99.5 76.7 69.4 99.0 73.9 67.0 97.6 50.6 49.3

Average 87.9 23.6 28.9 97.0 46.4 47.7 97.6 59.4 58.9 97.1 44.3 47.4

Table 10. Comparison of anomaly localization on VisA by train-
ing a U-Net on the generated data.

methods, our TF-IDG precisely identifies anomalies and
mitigates the false detection in the background.

Category DFMGAN AnoDiff Ours Ours (one-shot)
AUC AP F1-max AUC AP F1-max AUC AP F1-max AUC AP F1-max

candle 86.8 84.3 75.6 95.4 94.8 88.5 97.4 96.3 90.5 96.0 94.5 87.2
capsules 72.8 75.1 74.0 90.2 92.7 85.5 98.5 98.7 94.2 96.1 97.0 90.6
cashew 85.7 87.0 84.1 89.7 91.9 85.9 97.5 98.2 93.7 93.7 94.8 91.4

chewinggum 98.8 99.2 96.2 87.9 92.8 84.1 97.7 98.8 96.2 99.2 99.5 97.1
fryum 80.3 87.2 78.8 83.6 89.0 80.9 98.2 98.8 94.1 93.0 95.9 88.4

macaroni1 90.8 90.9 82.7 94.1 90.0 87.5 99.6 99.6 97.8 95.5 94.2 89.4
macaroni2 66.1 61.6 61.3 59.3 48.0 58.9 93.3 92.9 86.1 84.3 82.1 75.0

pcb1 90.8 87.9 82.3 94.5 93.3 87.0 94.1 92.6 83.5 87.7 85.8 78.9
pcb2 96.4 95.9 90.2 93.0 94.4 90.1 99.6 99.5 97.7 97.9 97.2 91.3
pcb3 74.3 72.8 63.2 91.6 90.8 81.3 97.2 97.5 94.0 95.3 93.3 90.2
pcb4 97.9 96.9 91.5 98.2 98.0 95.7 98.7 98.5 95.6 98.5 97.8 95.0

pipe fryum 83.0 89.1 80.3 86.4 90.3 85.1 97.1 98.3 94.2 86.8 91.2 84.7

Average 85.3 85.7 80.0 88.7 88.8 84.2 97.4 97.5 90.7 93.7 93.6 88.3

Table 11. Comparison of anomaly detection on VisA by training
a U-Net on the generated data.

3. Limitation
While our training-free framework demonstrates strong per-
formance in generating localized and texture-level anoma-
lies through image inpainting, we observe limitations in
handling semantic or logical defects. This suggests that ad-
dressing high-level structural or contextual defects may re-
quire incorporating richer object semantics and global con-
textual priors. Enhancing the model’s capacity for such
global reasoning represents a promising direction for future
research in industrial anomaly synthesis.
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