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Supplementary Material

Our supplementary material is organized as follows:
• Sec. A provides a formal problem definition of open-

vocabulary segmentation (OVS).
• Sec. B provides additional details of our approach and

implementation.
• Sec. C includes more experimental results and discus-

sions to supplement Sec. 4 of the main paper.
– Sec. C.1-Additional Ablation Study Results
– Sec. C.2-Additional Qualitative Results
– Sec. C.3-Backbone Usage for Training-Free Methods
– Sec. C.4-Free-form Queries and In-the-wild Results
– Sec. C.5-Data Usage for Training-Required Methods
– Sec. C.6-Comparison with Training-required Methods

• Sec. D discusses the limitation of our work.

A. Problem Definition
To complement the definition of open-vocabulary segmen-
tation (OVS), we formulate it mathematically as follows.

Given an input image I and a candidate set of class labels
L = {Ln}Nn=1, the objective of OVS is to assign a class la-
bel Ln ∈ L to each pixel in I . Each Ln represents the n-th
class described by free-form text, where N denotes the to-
tal number of candidate classes. Unlike traditional semantic
segmentation, where the category set is fixed and predefined
during training (L = Ltrain), OVS allows for segmentation
of arbitrary and unseen categories, operating under a zero-
shot setting. This flexibility facilitates adaptive and robust
dense scene understanding in dynamic real-world scenarios.

B. Approach and Implementation
B.1. Prompt for Generating Image Descriptions
We design a specific prompt to obtain semantically enriched
image descriptions using LLaVA. Our prompt is:
“Describe this image in detail. Mention all visible objects,
their parts, contexts, and characteristics like size, color, and
texture. Also, describe the background/foreground context,
including any natural scene or man-made structures, such
as wall, ceiling, sky, and cloud. FOCUS ONLY on visible
objects or contexts. Avoid speculation or guesses.”

B.2. Filtering Ambiguous Labels
Object Hallucination in MLLM Outputs. Multi-modal
large language models (MLLMs) such as LLaVA often suf-
fer from object hallucination. This includes generating de-
scriptions of tangible objects not present in the input image,
which we address through our group-based filtering phase.

Figure A1. The number of corresponding segments for each
unique label root. The knee of the distribution curve, Inflection
Point, indicates the threshold for filtering out ambiguous labels.

Figure A2. Visual feature encoding for image segments.

Additionally, MLLMs frequently produce ambiguous out-
puts reflecting abstract or subjective concepts evoked by
the image. For instance, descriptions like “The room has
a cozy atmosphere” lead to ambiguous labels such as “at-
mosphere,” which are ungrounded in observable entities and
irrelevant to segmentation tasks.
Fast Filtering of Ambiguous Labels. To address this is-
sue, we propose a fast and effective approach to eliminate
ambiguous labels arising from evoked descriptions. Due to
their abstract nature, these labels appear frequently across
MLLM-generated descriptions, often corresponding to an
unusually large number of segments in the dataset. This
observation forms the basis of our aggregation-based anal-
ysis. As described in Sec. 3.2, we group segment-text pairs
by consistent label roots. For each group represented by a
unique label root, we compute the total number of corre-
sponding segments (i.e., the group size) and plot the dis-
tribution of group sizes. By identifying the knee of the
curve—referred to as the inflection point (see Fig. A1)—we
filter out labels exceeding this point, such as “background,”



Figure A3. Illustration of reference set encoding for similarity-based retrieval. Image segments, textual labels, and their relationships
are encoded as Sref, Lref, and Oref, respectively. These embeddings collectively form the reference set, enabling efficient retrieval.

“scene,” “image,” and “atmosphere.” These labels domi-
nate the dataset and detract from meaningful segmentation
labels. Removing them ensures the dataset remains focused
on concrete and observable objects, improving its relevance
and usability for segmentation tasks.

B.3. Feature Encoding
Visual feature encoding. We compute segment embed-
dings following common practices [4, 14, 32, 33]. Accord-
ing to the requirements, a visual encoder such as DINOv2
or CLIPV is used, denoted as φ. As shown in Fig. A2, given
an input image I and its K corresponding segment masks
M = {Mk}Kk=1, the visual encoder processes the image
to obtain its embedding. To align the segment masks with
the encoder’s output resolution, the masks are resized using
a downscaling function, ζ. Lastly, we apply mask average
pooling (MAP) to produce embedding for each segment Sk.
This process is represented as:

Sk = MAP(φ(I), ζ(Mk)). (A1)

Textual feature encoding. We generate text embeddings
using a textual encoder CLIPT , denoted by ϕ. For a given
label L, we deploy four templates to prompt the encoder:
“A photo of {},” “This is a photo of {},” “There is {} in
the scene,” and “A photo of {} in the scene.” The text en-
coder processes each prompted input, and the resulting em-
beddings are averaged to form the final label embedding L.
This process is expressed as:

L =
1

P

P∑
p=1

ϕ(ψp(L)), (A2)

where P is the number of templates, and ψp(L) represents
applying p-th template to label L.

All encoded features, regardless of modality, are L2-
normalized to facilitate our cosine similarity computation.

B.4. Reference Set Construction
Following our intra-modality data enhancement phase (re-
fer to Sec. 3.2), we have obtained a high-quality set of
segment-text pairs. Fig. A3 depicts how we obtain specific
embeddings to construct the reference set for streamlined
retrieval. The visual encoder processes image segments to
extract d1-dimensional segment embeddings (Sref), while a
textual encoder generates d2-dimensional label embeddings
(Lref). To represent the relationships between segments and
their associated labels, we utilize binary encoding to for-
mulate Oref ∈ Rm×n, where m and n are the numbers of
unique segments and labels, respectively. Each row of Oref
corresponds to a segment, and a column entry of ‘1’ indi-
cates an association with a specific label and ‘0’ otherwise.
The resulting reference set is defined by {Sref,Oref,Lref},
combining visual, textual, and relational encodings. This
structured representation enables efficient similarity-based
retrieval in the subsequent phase.

B.5. Pseudocode for Similarity-Based Retrieval
To complement Sec. 3.3, we provide a Python-style pseu-
docode in Alg. A1 to detail the similarity-based retrieval
process. The variable names are consistent with those in
Sec. 3.3 for ease of reference, and comments within the
pseudocode indicate the steps corresponding to the equa-
tions discussed in the main paper.

C. More Experimental Results and Discussion
C.1. Additional Ablation Study Results
In this section, we provide comprehensive results and addi-
tional examples to supplement the findings presented in the



Algorithm A1 Pseudocode for similarity-based retrieval
# Inputs:
#   S_ref [m,d_1] - Segment embeddings in the reference set
#   O_ref [m,n] - Binary encoding of segment-label relationships
#   L_ref [n,d_2] - Label embeddings in the reference set
#   I_test [h,w] - Test image
#   ℒ_test - c test classes in text
# Outputs:
#   l_pred [h,w] - Predicted label mask for the test image
# Segment the test image into k class-agnostic masks
M_seg = segmenter(I_test) # [k,h,w]
# Same encoder as used for S_ref and L_ref
S_test = visual_encoder(I_test, M_seg) # [k,d_1]
L_test = textual_encoder(ℒ_test) # [c,d_2]
# Intra-modality similarities
sim_seg = np.dot(S_test, S_ref.T) # [k,m]
sim_text = np.dot(L_ref, L_test.T) # [n,c]
# Compute and ensemble affinities # Eqns.(1-3)
A1 = np.dot(softmax(sim_seg, axis=1), O_ref) # [k,n]
A2 = softmax(sim_text, axis=1) # [n,c]
P_seg = np.dot(A1, A2) # [k,c]
# Aggregate segment-class probabilities # Eqn.(4)
P_test = np.einsum('ij,ihw->hwj', P_seg, M_seg) # [h,w,c]
# Compute the predicted label mask # Eqn.(5)
l_pred = np.argmax(P_test, axis=2) # [h,w]

main paper. The supplementary tables and figures expand
on the quantitative and qualitative analyses in Sec. 4.3, of-
fering a more complete view of our ablation studies. We
cross-reference the corresponding tables/figures in the main
paper for clarity and context.

• Data enhancement component analysis. Full quantita-
tive results for analyzing contributions of individual com-
ponents in our data enhancement pipeline are presented
in Table A4 (supplementing Table 2 in the main paper).

• Analysis of different data filtering approaches. A
comprehensive comparison of different data filtering ap-
proaches is provided in Table A5, extending the analy-
sis from Table 3 in the main paper. We include a vari-
ant of our group-based filtering, noted as (d). Compared
to our default approach that use the same drop ratio for
all groups, (d) adapts each group’s drop ratio to its seg-
ment consistency, ranging from 0 to 50%, with weights
w = 1

n

∑n
i=1(1−⟨Si, Scenter⟩), allowing for more drops

in sparser groups. We can observe that this variant brings
further performance gain.
Additionally, we provide more examples to showcase
the superiority of intra-modality over cross-modality in
Fig. A4, to complement Fig. 3 in the main paper.

• Feature encoder backbones. Full results of using dif-
ferent feature encoder backbones are detailed in Table A6
(bottom), supplementing Table 4 in the main paper.

• Analysis of the description generator. Full results on
the impact of the description generator are shown in Ta-
ble A7, supplementing Table 5. In addition, to further
evidence the semantic richness of LLaVA-generated de-
scriptions as discussed in Fig. 7 in the main paper, we
provide more examples in Fig. A5.

• Analysis of the segmenter. Additional results for the

Method VOC-20 PC-59 A-150 PC-459
LLaVA [20] as Classifier 72.65 35.50 20.03 7.22
Qwen [3] as Classifier 70.67 36.03 21.21 6.36
LLaVA [20] as Filter 73.06 37.55 22.05 7.60
Qwen [3] as Filter 72.18 38.10 22.81 8.15
ReME 92.34 44.89 26.13 14.12
ReME (OpenFlamingo [2]) 92.54 44.77 25.95 13.39

Table A1. Top: Analysis of large MLLM capabilities. We use
LLaVA-1.5 [20] and Qwen-2.5 VL [3] to (1) classify segmentation
masks without any references, and (2) perform label filtering for
data enhancing, respectively. They all perform significantly worse
than ReME. This demonstrates that challenging tasks such as OVS
require strategic adaptation rather than direct use. Bottom: Anal-
ysis of our performance gain from inherent segment-text pretrain-
ing. We replace LLaVA-1.5 [20] with OpenFlamingo [1] trained
purely on image-text data. The performance remains comparable,
indicating ReME’s effectiveness without dense annotations.

Method († w/ seg-text training) VOC-20 PC-59 A-150 PC-459
CAT-Seg (GT COCO) [9]† 94.57 57.45 31.81 19.04
CAT-Seg (ReME)† 94.60 59.76 32.24 22.03
FreeDA [4] 87.91 43.49 22.43 10.24
FreeDA (ReME) 92.35 44.80 24.91 13.89
ReME 92.34 44.89 26.13 14.12

Table A2. Data transferability. We apply ReME data to two rep-
resentative methods by replacing their training/reference data: (1)
training-based CAT-Seg [9], and (2) retrieval-based FreeDA [4].
The results demonstrate the strong utility of our data across both
training-based and training-free OVS.

impact of various segmenters are presented in Table A8,
which complements Table 6 in the main paper.

• Analysis of the large MLLM capabilities. To analyze
the capabilities of large MLLM compared to our data
enhancement framework, we perform two experiments.
(1) We directly leverage advanced MLLMs, including
LLaVA-1.5 [20] and Qwen-2.5 VL [3], to assign class la-
bels to class-agnostic segmentation masks, without using
any data as references. (2) We perform data filtering with
each MLLM, rather than using our group-based data fil-
tering. The results are shown in Table A1, marked as “* as
Classifier”, and “* as Filter”, respectively. They perform
significantly worse than ReME. This observation aligns
with widely discussed challenges in directly using VLMs
for fine-grained data matching—they tend to hallucinate
object labels and produce noisy predictions. These re-
sults highlight: while pre-trained models present poten-
tial, challenging tasks like reasoning segmentation [16]
or OVS require strategic adaptation rather than direct use.
For instance, LISA [16] fine-tunes vLLM+SAM back-
bones, while ReME studies data-centricity—they con-
tribute in complementary ways.

• Data transferability. We apply ReME data to two rep-
resentative methods by replacing their training/reference



data: (1) training-based CAT-Seg [9], and (2) retrieval-
based FreeDA [4]. As shown in Table A2, CAT-Seg
(ReME) even surpasses the version trained on COCO
ground-truth, and FreeDA (ReME) also outperforms the
original version with its default reference set. The results
demonstrate the strong utility of ReME data across both
training-based and training-free OVS settings.

C.2. Additional Qualitative Results

We perform additional qualitative comparisons with other
training-free baselines. The results are shown in Fig. A6. In
addition, we present qualitative results of ReME-SAM on
datasets with a large number of categories. Specifically, we
include ADE20K [42] with 847 categories (Fig. A8), Pas-
cal Context [24] with 459 categories (Fig. A9), and COCO
Stuff [6] with 171 categories (Fig. A10).

C.3. Backbone Usage for Training-Free Methods

Table A10 presents the backbone usage across various
training-free methods. As shown, earlier approaches pre-
dominantly relied on a single CLIP backbone, but their
overall performance falls short compared to more recent
methods that leverage multiple backbones. Compared
to these multi-backbone methods, our approach (1) re-
mains entirely off-the-shelf, avoiding structural modifica-
tions to the backbone as implemented in ProxyCLIP, and
(2) achieves the best performance while maintaining con-
trolled backbone usage.

Additionally, existing methods employ different back-
bone variants, such as ViT-B/16 and ViT-L/14, with some
supporting even larger models like ViT-H/14. In our com-
parisons, we use ViT-L/14 by default. However, if a method
performs better with ViT-B/16, we report the superior result.

C.4. Free-form Queries and In-the-wild Results

Generalizability evaluation. Quantitative. We evaluate
generalizability using free-form text. To ensure a fair com-
parison, we use the same superpixel segmenter as FreeDA.
We prompt GPT4o three times independently to generate
diverse free-form class variations (e.g.,“cat”→“small do-
mestic feline”) and then perform retrieval. Results across
three runs are summarized in Table A9. Shifting to free-
from text, FreeDA and ProxyCLIP experience significant
performance drops, whereas ReME consistently outper-
forms them. Qualitative. Following FreeDA, we collect
in-the-wild text and qualitatively evaluate out method. The
results are shown in Fig.A7.

C.5. Data Usage for Training-Required Methods

For training-required OVS methods using image-text pairs,
they often demand extensive training. Table A3 provides the
training data size for such methods, where we can observe

Methods Training or Fine-tuning dataset Size
GroupViT[36] CC12M+YFCC 26 million

SimSeg[40] CC15M 15 million
TCL[7] CC15M 15 million

CoCu[35] CC15M+YFCC 29 million
ZeroSeg[8] CC3M+COCO 3.4 million

OVSegmentor[37] CC4M 4 million
SegCLIP[21] CC3M+COCO 3.4 million

CoDe[34] CC15M 15 million
SAM-CLIP[30] CC15M+YFCC+IN21k 41 million

Table A3. Data usage for training-required OVS methods.

that millions of image-text pairs from diverse datasets are
leveraged, indicating their higher computational cost.

C.6. Comparison with Training-required Methods
Although it falls beyond our primary scope of compari-
son, we also evaluate our approach against training-required
methods, as shown in Table A11. Our method outper-
forms all approaches fine-tuned with image-text data.
When compared to methods fine-tuned with segment-text,
our approach surpasses LSeg+ [12], ZegFormer [10], and
ZSseg [38], but falls short compared to OVSeg [19],
SAN [39], and CATSeg [9]. This performance gap is com-
monly observed across all training-free methods when com-
pared to models that demand fine-tuning on segment-text.

However, it is important to note that training-free meth-
ods have significantly fewer resources: (1) no training is
performed, and (2) no labor-intensive pixel-level annota-
tions. i.e., segment-text data, are required. As a training-
free method, we achieve the smallest performance gap com-
pared to these segment-text fine-tuned models.

To sum up, our contributions remain distinct: A.
ReME achieves state-of-the-art performance among all
training-free methods while also surpassing models
trained on millions of image-text pairs, demonstrating re-
duced dependence on large-scale training. B. Our frame-
work provides a novel perspective on multi-modal data
quality, offering contributions that extend beyond OVS.

D. Limitation

One limitation of our framework is the decision to drop mis-
aligned pairs in the base set rather than correcting them by
reassigning appropriate labels. For instance, in Fig. 3 of
the main paper, misaligned pairs where “dog” is associated
with segments not depicting dogs are simply filtered out. A
more sophisticated approach could involve identifying the
correct segments for those labels and reassigning appropri-
ate labels to the affected segments. This refinement would
increase the diversity of the final reference set and further
enhance the quality of the resulting segment-text embed-
dings. However, given the diversity and scale of our image



resource, COCO-2017 [6], we opt for a simpler and more
efficient data enhancement phase.

In domains with limited data availability and constrained
diversity [23], this limitation could be addressed easily
through a plug-in component. After group-based filter-
ing, this component could leverage intra-modality similarity
to identify the closest neighbors for each element in mis-
aligned pairs, enabling the estimation of correct matches
with minimal computational overhead.



Components mIoU
VOC-20 VOC-21 City PC-59 PC-60 Object Stuff A-150 PC-459 A-847 AVG10

Base set (no enhancement) 70.03 62.30 30.94 35.42 30.46 39.38 27.01 22.03 9.14 6.19 33.29
w/ (i) Synonym-guided enriching 79.50 66.91 33.47 36.69 34.81 39.92 28.02 23.41 9.56 6.22 35.85
w/ (ii) Group-based filtering 91.10 76.41 47.36 40.66 38.52 42.48 31.80 24.09 12.96 7.13 41.25
w/ Both (i) and (ii) 92.34 79.63 50.42 44.89 41.64 45.50 33.12 26.13 14.12 8.43 43.62

Table A4. Impact of data enhancement components.

mIoUData filtering alternatives VOC-20 VOC-21 City PC-59 PC-60 Object Stuff A-150 PC-459 A-847 AVG10

Global filtering*(a) 79.34 71.19 41.37 39.79 37.25 40.79 31.16 21.18 11.71 7.88 38.47
*Group-based filtering (with cross-modality CLIP score)(b) 80.05 72.92 43.06 41.84 39.44 41.81 31.88 22.79 12.19 8.33 39.63
*Group-based filtering (with intra-modality similarity score)(c) 92.34 79.63 50.42 44.89 41.64 45.50 33.12 26.13 14.12 8.43 43.62
*Group-based filtering (with intra-modality similarity score; weighted ratio)(d) 92.26 79.61 50.38 44.97 41.88 45.60 33.17 26.51 14.74 8.58 43.77

Table A5. Analysis of different data filtering approaches.

mIoUFeature encoder VOC-20 VOC-21 City PC-59 PC-60 Object Stuff A-150 PC-459 A-847 AVG10

CLIP 91.61 68.77 38.53 36.51 35.08 39.82 26.85 24.72 13.76 7.51 37.81
DINOv2B 91.72 79.13 50.20 43.65 41.37 44.71 32.58 25.29 13.79 7.68 43.01
DINOv2L 92.34 79.63 50.42 44.89 41.64 45.50 33.12 26.13 14.12 8.43 43.62

Table A6. Analysis of feature encoder variations.

Captioners mIoU
VOC-20 VOC-21 City PC-59 PC-60 Object Stuff A-150 PC-459 A-847 AVG10

LLaVA [20] 92.34 79.63 50.42 44.89 41.64 45.50 33.12 26.13 14.12 8.43 43.62
BLIP-2 [18] 89.41 56.32 40.06 40.85 38.42 37.64 30.76 24.31 12.42 6.47 37.67
GT Caption 89.02 55.57 40.19 40.15 38.37 37.77 29.68 24.09 11.64 5.37 37.18

Table A7. Ablation study of the image description generator.

Segmenters mIoU
VOC-20 VOC-21 City PC-59 PC-60 Object Stuff A-150 A-847 PC-459 AVG10

Superpixel [11] 92.34 79.63 50.42 44.89 41.64 45.50 33.12 26.13 14.12 8.43 43.62
SAM [15] 93.15 82.20 59.04 53.10 44.58 48.21 33.32 28.21 15.82 8.80 46.64
SAM2 [25] 93.18 82.26 61.19 52.03 43.42 48.40 33.36 28.21 8.83 15.97 46.69

Table A8. Ablation study of the segmenter.

Methods mIoU
PC-59 PC-59∗ ∆(%) A-150 A-150∗ ∆(%) PC-459 PC-459∗ ∆(%) A-847 A-847∗ ∆(%)

Ours 44.89 42.89±0.9 ↓ 4.46 26.13 26.12±0.3 ↓ 0.04 14.12 13.14±0.1 ↓ 6.94 8.43 7.35±0.1 ↓ 12.81
FreeDA [4] 43.50 36.18±0.8 ↓ 16.83 22.4 16.27±1.0 ↓ 27.37 10.20 7.16±0.2 ↓ 29.80 5.30 2.09±0.1 ↓ 54.52

ProxyCLIP [17] 37.7 33.15±1.2 ↓ 12.05 22.6 17.12±0.3 ↓ 24.26 11.20 8.41±0.3 ↓ 24.84 6.70 6.39±0.2 ↓ 4.63

Table A9. Generalizability evaluation with free-form queries.



Methods Backbone Post-proc mIoU
VOC-20 VOC-21 City PC-59 PC-60 Object Stuff A-150 PC-459 A-847

GEM [5] CLIP ✗ 46.2 24.7 - 32.6 21.2 - 15.1 10.1 4.6 3.7
MaskCLIP [43] CLIP, DeepLabV2 ! 74.9 38.8 12.6 25.5 23.6 20.6 14.6 9.8 - -
ReCo [27] CLIP, DenseCLIP ! 62.4 27.2 23.2 24.7 21.9 17.3 16.3 12.4 - -
SCLIP [29] CLIP ! 83.5 61.7 34.1 36.1 31.5 32.1 23.9 17.8 9.3 6.1
CaR [28] CLIP ! 91.4 67.6 15.1 39.5 30.5 36.6 11.2 17.7 11.5 5.0
NACLIP [13] CLIP ! 83.0 64.1 38.3 38.4 35.0 36.2 25.7 19.1 9.0 6.5
CLIPtrase [26] CLIP ! 81.2 53.0 21.1 34.9 30.8 39.6 24.1 17.0 9.9 5.9
PnP [22] CLIP, GPT4om, BLIP ! 79.1 51.3 19.3 31.0 28.0 36.2 17.9 14.2 5.5 4.2
FreeDA [4] CLIP, Stable Diffusion, DINO ! 87.9 55.4 36.7 43.5 38.3 37.4 28.8 22.4 10.2 5.3
ProxyCLIP [17] CLIP, DINO ✗ 83.2 60.6 40.1 37.7 34.5 39.2 25.6 22.6 11.2 6.7
DiffSegmenter [31] Stable Diffusion, BLIP, U-Net, DeepLabV2 ! 71.4 60.1 - 27.5 25.1 37.9 - - - -
OVDiff [14] CLIP, Stable Diffusion, GPT, CutLER ! 80.9 68.4 23.4 32.9 31.2 36.2 20.3 14.1 12.0 6.6
ReME (Ours) CLIP, LLaVA, DINO ✗ 92.3 79.6 50.4 44.9 41.6 45.5 33.1 26.1 14.1 8.4

Table A10. Comparison to training-free methods without SAM. The best overall results are bolded, with the second-best results
underlined.

Figure A4. The superiority of intra-modality over cross-modality for data issue detection. Each figure provides a UMAP projection of
segment embeddings labeled as “horse” or “surfboard”, respectively, colored by cross-modal similarity scores (CLIP scores) between the
segment and its corresponding label. Individual segments are shown below. Blue boxes highlight misalignments detected by our filtering;
orange boxes are those detected by low CLIP scores, which remove correct pairings while leaving many misalignments unaddressed.

Figure A5. Image descriptions from different resources. Red text highlights concepts uniquely present in the LLaVA description.



Methods Post-processing mIoU
VOC-20 VOC-21 City PC-59 PC-60 Object Stuff A-150 PC-459 A-847

Methods that require finetuning on segment-text data
LSeg+[12] ✗ - 59.0 - 36.0 - - - 13.0 5.2 2.5
ZegFormer [10] ✗ 86.2 62.7 - 42.8 - - - 16.9 9.1 4.9
ZSseg [38] ✗ 88.4 - - 44.7 - - - 20.5 - 7.0
OVSeg [19] ✗ 94.5 - - 55.7 - - - 29.6 12.4 9.0
SAN [39] ✗ 94.6 - - 57.7 - - - 32.1 15.7 12.4
CAT-Seg [9] ✗ 97.0 82.5 - 63.3 - - - 37.9 23.8 16.0
Methods that require finetuning on image-text data

GroupViT [36] ✗ 74.1 52.3 11.1 23.4 22.4 24.3 15.3 10.6 4.9 4.3
SimSeg [40] ! 57.4 35.2 10.8 26.2 23.4 29.7 18.5 11.4 5.0 4.7
TCL [7] ! 83.2 55.0 23.1 33.9 30.4 31.6 19.6 17.1 8.7 6.3
CoCu [35] ✗ 73.0 51.4 22.1 26.5 23.6 22.7 15.2 12.3 5.1 4.5
ZeroSeg [8] ✗ - 40.8 - 20.4 - 20.2 - - - -
OVSegmentor [37] ✗ - 53.8 - - 20.4 25.1 - 5.6 - -
SegCLIP [21] ✗ - 52.6 - - 24.7 26.5 - 8.7 - -
CoDe [34] ! 57.7 - 28.9 30.5 - 32.3 23.9 17.7 - -
SAM-CLIP [30] ✗ - 60.6 - - 29.2 - 31.5 17.1 - -
Training-free Methods without SAM
GEM [5] ✗ 46.2 24.7 - 32.6 21.2 - 15.1 10.1 4.6 3.7
MaskCLIP [43] ! 74.9 38.8 12.6 25.5 23.6 20.6 14.6 9.8 - -
ReCo [27] ! 62.4 27.2 23.2 24.7 21.9 17.3 16.3 12.4 - -
SCLIP [29] ! 83.5 61.7 34.1 36.1 31.5 32.1 23.9 17.8 9.3 6.1
CaR [28] ! 91.4 67.6 15.1 39.5 30.5 36.6 11.2 17.7 11.5 5.0
NACLIP [13] ! 83.0 64.1 38.3 38.4 35.0 36.2 25.7 19.1 9.0 6.5
CLIPtrase [26] ! 81.2 53.0 21.1 34.9 30.8 39.6 24.1 17.0 9.9 5.9
PnP [22] ! 79.1 51.3 19.3 31.0 28.0 36.2 17.9 14.2 5.5 4.2
FreeDA [4] ! 87.9 55.4 36.7 43.5 38.3 37.4 28.8 22.4 10.2 5.3
ProxyCLIP [17] ✗ 83.2 60.6 40.1 37.7 34.5 39.2 25.6 22.6 11.2 6.7
DiffSegmenter [31] ! 71.4 60.1 - 27.5 25.1 37.9 - - - -
OVDiff [14] ! 80.9 68.4 23.4 32.9 31.2 36.2 20.3 14.1 12.0 6.6
ReME (Ours) ✗ 92.3 79.6 50.4 44.9 41.6 45.5 33.1 26.1 14.1 8.4
Training-free Methods with SAM
RIM [33] ✗ 77.8 - - 34.3 - 44.5 - - - -
CaR w/ SAM [28] ✗ - 70.2 16.9 40.5 31.1 37.6 12.4 17.9 11.8 5.7
CLIPtrase w/ SAM [26] ✗ 82.3 57.1 - 36.4 32.0 44.2 24.8 17.2 10.6 6.0
ProxyCLIP w/ SAM [17] ✗ 80.4 59.3 37.0 37.0 33.6 35.4 25.0 19.1 6.9 4.8
CorrCLIP [41] ✗ 91.6 74.1 47.7 45.5 40.3 43.6 30.6 - - -
ReME (Ours) w/ SAM ✗ 93.2 82.2 59.0 53.1 44.6 48.2 33.3 28.2 15.8 8.8

Table A11. Comparison to state-of-the-art OVS approaches. The best overall results are bolded, with the second-best results underlined.
We also analyze data robustness by varying the image resources of our reference set from the default COCO-2017 to VOC and ADE,
respectively, where leading performances over baselines are bolded.



Figure A6. Qualitative results of ReME in comparison with other training-free OVS methods. SCLIP is based on CLIP attention;
ProxyCLIP enhances CLIP attention with DINO features; FreeDA and ReME are retrieval-based methods, adopting the same superpixel-
algorithm [11] for class-agnostic segmentation. We observe increasing quality of OVS results from left to right, with less noise in both
masks and assigned labels.

Figure A7. In-the-wild segmentation results obtained by prompting ReME with diverse free-form textual inputs.



Figure A8. Qualitative results on ADE20K [42] with 847 categories.



Figure A9. Qualitative results on Pascal Context [24] with 459 categories.



Figure A10. Qualitative results on COCO Stuff [6] with 171 categories.
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