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Appendix

This appendix is organized as follows.

• Implementation details on the model structure. (§A)
• More details about datasets and keypoint definition. (§B)
• More discussions are provided, including the effects of

loss coefficient η, an analysis of the decrement on the
CLIP-Score, a validation of our heatmap constraint Lht,
and effects of our method on data augmentation. (§C)

• Additional visualized examples with detailed illustrations
are presented to supplement the main paper. (§D)

• A discussion about limitations and future works. (§E)

A. More Details of Model Structure

We provide the detailed structure of our sparse-pose em-
bedding module G(·) in Fig. S1. It comprises two linear
layers and three basic blocks of stacked Linear + GeLU
+ Dropout + Linear + Layer Norm layers. The
module accepts the random initialized vector E0 and out-
puts the learned keypoint embeddings Ekpt for constructing
the spatial-pose representation, which is optimized directly
for the denoising diffusion objective.
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ID Keypoint ID Keypoint
0 left eye 9 right elbow

1 right eye 10 right front paw

2 nose 11 left hip

3 neck 12 left knee

4 root of tail 13 left back paw

5 left shoulder 14 right hip

6 left elbow 15 right knee

7 left front paw 16 right back paw

8 right shoulder

ID Keypoint ID Keypoint
0 nose 9 left wrist

1 left eye 10 right wrist

2 right eye 11 left hip

3 left ear 12 right hip

4 right ear 13 left knee

5 left shoulder 14 right knee

6 right shoulder 15 left ankle

7 left elbow 16 right ankle

8 right elbow

(a) AP-10k (b) HumanArt

Figure S1. The detailed structure of our sparse pose embedding
module G(·).

ID Reference
(main paper) Brief Illustration

Fig. S1 §3.1, Line 191
Detailed architecture of the spatial
embedding module G(·).

Fig. S2
§3.1, Line 171
§4.1, Line 291,301

Keypoint descriptions of AP-10K
and Human-Art dataset.

Fig. S3 §4.2, Line 328 Discussions on loss coefficient η.

Fig. S4 §4.4, Line 428 Analysis of the CLIP-Score.

Fig. S5 §4.5, Line 479 Discussion on heatmap loss Lht.

Fig. S6 – Illustrations on the limitations.

Fig. S7 §3.2, Fig. 4
Full cross-attention maps of
ControlNet.

Fig. S8 §4.5, Fig. 9
Full cross-attention maps of our
SP-Ctrl.

Fig. S9 §4.3, Fig. 5 More examples on AP-10K.

Fig. S10 §4.3, Fig. 5 More examples on Human-Art.

Fig. S11 §4.5, Fig. 10
More examples of generation
with different conditions.

Fig. S12 §4.5, Fig. 11
More examples to show the
shape diversity of our method.

Fig. S13 §4.5, Fig. 12
More examples to show the cross-
species generation.

Fig. S14 §5.5, Fig. 13
More examples to show the pose-
editing results.

Tab. S2 §4.1, Line 295 Prompt templates for AP-10K.

Tab. S3 – Validation for data augmentation.

Table S1. Quick overview of figures and tables in the Appendix.

B. More Details of Datasets

Definition of animal and human pose. Fig. S2 presents the
definition of pose on the AP-10K [6] and Human-Art [3]
datasets, including pre-defined keypoint descriptions and
the topological skeletons. For AP-10K, we adopt the 17-
keypoint definition of pose for mammals, which is provided
by the dataset. For Human-Art, the dataset provides two
kinds of pose definitions for the human, i.e., 17-keypoints
and 21-keypoints. To keep close to the definitions on ani-
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Keypoint Description Keypoint Description

1 left eye 10 right elbow

2 right eye 11 right front paw

3 nose 12 left hip

4 neck 13 left knee

5 root of tail 14 left back paw

6 left shoulder 15 right hip

7 left elbow 16 right knee

8 left front paw 17 right back paw

9 right shoulder

Keypoint Description Keypoint Description

1 nose 10 left wrist

2 left eye 11 right wrist

3 right eye 12 left hip

4 left ear 13 right hip

5 right ear 14 left knee

6 left shoulder 15 right knee

7 right shoulder 16 left ankle

8 left elbow 17 right ankle

9 right elbow

(a) AP-10K (b) Human-Art
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Figure S2. The definition (or description) of each keypoint on the
AP-10K and Human-Art dataset.

Table S2. Prompt templates for the AP-10K dataset, where <CLS>
and <BG> denote specie names and background types.

ID Prompt Templates

1 A good photo of <CLS>.
2 A photo of <CLS> in the <BG>.
3 There is <CLS> on the <BG>
4 There are some <CLS> lying in the <BG>.
5 Some <CLS> are in the <BG>.
6 A close photo of <CLS>.
7 In the <BG>, there are several <CLS>.
8 This is a clear photo of <CLS> in the <BG>.
9 Several <CLS> are on the <BG>.

10 A <CLS> stands on the <BG>.

mal poses, we employ the 17-keypoint definition of human
pose as listed in Fig. S2. To visualize the animal and human
pose in OpenPose style, we utilize the code provided by the
popular mmpose [1] repository.

Prompt Templates for AP-10K. Since the AP-10K dataset
does not provide the image captions, we utilize a series
of prompt templates following common practice [2]. We
designed 10 templates as presented in Tab. S2, where the
species name and background category are utilized to con-
struct the textual prompt for each image. The AP-10K
dataset predefines 54 species of 23 animal families and 8
background types [6], including grass or savanna, forest or
shrub, mud or rock, snowfield, zoo or human habitation,
swamp or rivderside, desert or gobi, and mugshot. When
training, we randomly select one as the image caption.

C. More Discussions

Discussions of the loss coefficient η. We search for the
optimal setting of the loss weighting η for our proposed
heatmap loss Lht as reported in Fig. S3. While too large
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(b) Impact of different time steps
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(a) Impact of keypoint text embeddings and heatmap loss
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Figure S3. Discussions of the loss coefficient η.

This is a clear photo of 
horse <<left-eye> <nose> 
<neck> …. <right-knee> 
<right-back-paw>> in the 
grass or savanna.

A photo of 
squirrel in the 
zoo or human

This is a clear photo 
of horse in the 
grass or savanna.

A photo of squirrel 
<<left-eye> <right-eye> 
<nose> <neck> … <right-
back-paw>> in the zoo 
or human habitation

A photo of 
squirrel in the 
zoo or human

A photo of 
squirrel in the 
zoo or human

22.79

21.18
(↓ 1.61)

This is a clear photo 
of horse in the 
grass or savanna.

This is a clear photo 
of horse in the 
grass or savanna.

25.91

25.16
(↓ 0.75)

Pose Prompt for 
Generation

Prompt for 
EvaluationOurs CLIP-Score

Figure S4. An illustration on the decrease of CLIP-Score due to
inference-evaluation discrepancy.

η decreases the CLIP-Score and pose mAP, we set η = 0.1
in our experiments, which achieves the optimal pose mAP
of 55.63% and competitive CLIP-Score of 23.86.

Explanations on the computation of CLIP-Score. Since
our method binds text prompts with newly introduced key-
point tokens in the main paper §3.2 (denoted as <kpt>)
for training and generation, this arises difficulty in prop-
erly evaluating CLIP-Score of <kpt>. The reasons are: 1)
<kpt>s are new to the pretrained CLIP model, which are
not contained in the CLIP model’s vocabulary, and 2) fine-
tuning the CLIP model with <kpt> would also bring bi-
ases. Thus, we take their initialized tokens as alternatives to
compute the CLIP-Score for estimation, approximating the
true CLIP-Score as possible. The recomputed CLIP-Score
24.51 is comparable to 24.77 of the baseline ControlNet in
the main paper Fig. 7, and the difference is almost negli-
gible. Besides, we suppose that it is possible to obtain a
trade-off between the pose mAP and CLIP-Score by drop-
ping <kpt> during parts of the sampling steps. We also
tried to simply remove all <kpt> for estimation, but found
decreased CLIP-Scores as illustrated in Fig. S4. It is consid-
ered an error caused by inference-evaluation discrepancy.

Effects of the heatmap constraint Lht. To validate the



<left-eye> <right-eye> <neck> <root-of-tail><nose> <right-shoulder>

A photo of buffalo 
<<left-eye> <right-
eye> <nose> <neck> 
<root-of-tail> <left-
shoulder> <left-elbow> 
<left-front-paw> … 
<right-back-paw>>

Spatial Pose Ours

Cross-attention Maps

Ours
(w/o heatmap loss)

Prompt <left-eye> <right-eye> <neck> <root-of-tail><nose> <right-shoulder>

Figure S5. Comparisons of visualized cross-attention maps with
and without the heatmap constraint Lht.

Data Gen mAP↑ mAR↑
ControlNet 50.39 55.17
Ours 57.10 61.00
Real Image 74.70 77.68
+ ControlNet 75.05 (+0.35) 78.17 (+0.49)
+ Ours 75.44 (+0.74) 78.49 (+0.81)

Table S3. Validation on the effectiveness of our method as a data
generator on AP-10K for data augmentation.

function of Lht, we visualize the cross-attention map with
and without the proposed heatmap constraint. As shown in
Fig. S5, without explicit constraints on the heatmaps, the
newly introduced tokens are spatially overlapped and lack
specific meanings, failing to attend to the correct positions
of keypoints. In contrast, the heatmap constraint Lht effec-
tively distinguishes attentions of different keypoint tokens
and benefits pose accuracy in the main paper, Fig.7. More-
over, even though exploring other solutions for constraints
is feasible, the heatmap constraint is straightforward and
reasonable for pose control, and it shows no obvious de-
fects in image generation and pose control. Thus, we adopt
heatmaps to encourage sparse and strong spatial responses
to each keypoint for enhanced pose alignments. Note that
the heatmaps are Gaussian-blurred [4].

Validation of our method as a data generator for aug-
mentation. To prove the effectiveness of our method, we
evaluate it as a data generator. Specifically, we generate im-
ages from pose annotations of AP-10K and train HRNet on
the synthesized images for pose estimation. As reported in
Tab. S3, when employing the synthesized images only or
combining them with real images for training, our method
outperforms ControlNet under both settings and improves
HRNet with no special designs except data augmentations,
which obtains similar gains as observed in [5]. This fact in-
dicates better pose alignments than ControlNet and unravels
the potential in data augmentation.

D. More Visualized Results
We provide additional qualitative results to supplement the
main paper. Details are as follows.

Full visualized results of cross-attention maps. We show
all the cross-attention maps of the vanilla ControlNet [7]

and our SP-Ctrl method in Fig. S7 and Fig. S8, where the
time step here denotes the steps of adding noises. These
attention maps are averaged across different transformer
blocks at each time step. As shown in the figure, compared
with the baseline ControlNet, the keypoint tokens attend to
the positions of each keypoint more accurately. Though we
only compute the Lht among the 3rd transformer blocks
during the 250∼500 time steps following the best practice,
we notice that the cross-attention maps after the 250∼500
time steps also attend to the keypoint positions. This fact
indicates that constraining the cross-attention maps during
the 250∼500 time steps implicitly regularizes the attention
maps at other time steps, all contributing to the learning of
new keypoint tokens.

More visualized comparisons between other popular
methods and ours. Here we present more examples of
pose-guided image synthesis on the AP-10K and Human-
Art dataset in Fig. S9 and Fig. S10 to show the effective-
ness of our SP-Ctrl. As shown in the figure, while Control-
Net and other methods might fail to interpret certain key-
points, such as the limbs, our method shows advantages in
aligning with the detailed poses on both animal- and human-
centric generation tasks. These results demonstrate the ef-
fectiveness of our method in pose controllable generation
with sparse signals.

More visualized comparisons on different pose guid-
ance. Fig. S11 presents more visualized examples of Con-
trolNet with different conditions and ours. The masks fail
to control the keypoint positions. While the depth map
achieves precise control over pose, it also constrains the
shape of generated animals. The OpenPose signal provides
pose guidance for ControlNet but may fail when meeting
complex poses or overlapped local structures. In contrast,
our method achieves better control over sparse pose signals.

More examples to show the advantages of our method.
Benefiting from the precise pose control under the sparse
pose guidance, our SP-Ctrl shows several appealing proper-
ties for applications. Compared to dense signals like depth,
our method exhibits more diverse results in object shapes, as
shown in Fig. S12. Moreover, due to the category-agnostic
characteristics of sparse pose, our method enables cross-
species generation. As shown in Fig. S13, despite the dis-
crepancies in the action and skeleton proportions among
different animal species, our method can produce promis-
ing results of different animals sharing the same pose. Addi-
tionally, since the sparse pose signals do not necessarily rely
on the pretrained pose estimators, it enjoys great flexibility
in pose editing and creation. Fig. S14 showcases several ex-
amples. Such results show the great potential of sparse pose
signals in spatially controllable generation.



drama, a group of people on stage stained_glass, a stained glass window depicting nativity

OursSparse Pose OursSparse Pose

Figure S6. Examples of multiple-instance generation with pose
signals, which is a more challenging case with overlaps, occlusion,
and interactions of subjects.

E. Limitations and Future Work
By far, we have demonstrated the effectiveness of our SP-
Ctrl in pose-guided text-to-image generation using sparse
signals, which achieves performance nearly comparable to
dense signal-based methods in terms of pose alignment.
However, a significant gap in pose accuracy (> 25%) re-
mains between synthesized images and real ones, particu-
larly for rare or complex poses. One possible solution is to
leverage synthesized images to augment the pose diversity,
particularly for complex ones, to enhance the perception
and pose-alignment of generative models. Another crucial
challenge is pose-controllable generation involving multi-
ple instances. Although our method has shown promising
results in Fig. S9 and Fig. S10, further researches are re-
quired to address the multiple-instance generation with pose
signals, which is a more challenging case with overlaps, oc-
clusions, and interactions between subjects as presented in
Fig. S6. We leave this for future work.
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Figure S7. Visualized cross-attention maps of ControlNet at different time steps, which are averaged from all cross-attention layers. The
time step here denotes the steps of adding noises.
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Figure S8. Visualized cross-attention maps of our SP-Ctrl at different time steps, which are averaged from all cross-attention layers. For
page width limitations, we present the cross-attention maps of distinct keypoint for visualization. The time step here denotes the steps of
adding noises.
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In the mugshot, there are several jaguar..

There is a clear photo of squirrel in the mugshot.

A photo of panda in the forest.

A polar bear stands in the zoo.

A good photo of bobcat.

A photo of cat in the mugshot.

There is lion on the rock.

A photo of leopard in the mugshot.

T2I-Adapter ControlNet OursSparse Pose

A photo of cat. A photo of lion in the rook.

Figure S9. More visualized examples of our method and other popular methods on the AP-10K dataset.
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mural, a colorful mural on the side of a building

digital_art, a man in red is walking through a forest with a castle in the background

kids_drawing, two children playing in the water with palm trees

sketch, kibitzer patreon by kibitzer

sculpture, a statue of a man and a woman on top of each other

sculpture, a small clay figure of a man with a hat ongarage_kits, a figurine of a woman in a kimono

dance, a man and woman dancing in a ballroom

dance, two dancers in white dress and black shoes on stage

acrobatics, a woman is hanging upside down on a white pole

Figure S10. More visualized examples of our method and other popular methods on the Human-Art dataset.
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lying in the zoo.

Figure S11. More visualized examples generated with different conditional guidance of ControlNet and our method.
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Figure S12. More visualized examples to showcase the shape diversity of synthesized images. When achieving precise pose control
comparable to depth maps, our method can generate more diverse results with sparse signals, especially in shapes and contours.
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Figure S13. More visualized examples to showcase the cross-species generation ability. Our method can not only generate other species
of animals but also keep high pose accuracy and image fidelity.
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Figure S14. More visualized examples to showcase the generated image with edited pose signals, where sparse poses can be easily edited
by changing the positions of keypoints.
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