
DLF: Extreme Image Compression with Dual-generative Latent Fusion
Supplementary Material

This document provides the supplementary material for
the proposed Dual-generative Latent Fusion (DLF) model,
which introduces a novel dual-branch coding approach for
extreme image compression. It provides comprehensive de-
tails on the training strategy, model architecture, experi-
ments, and additional evaluations.

A. Training Details
This section outlines the detailed training strategy. We train
our model using the Open Images v4 training dataset [8].
Due to the storage limitations, we randomly sample 400,000
images from this dataset for training.

A.1. Stage 1: Latent Alignment
To ensure that the detail branch captures the most signifi-
cant contents while discarding minor ones, we impose a rate
constraint on the detail features. Consequently, we design
the latent domain rate-distortion loss as follows:

LStage-1 = ||ĥ− h̃||22 + λ · R(ŷd) (1)

where ĥ is the decoded latent generated by the latent adap-
tor, and the supervision latent h̃ is obtained from a pre-
trained auxiliary encoder (i.e., the VQGAN encoder [4]).
Additionally, R(ŷd) denotes the bitrate of the quantized de-
tail latent ŷd, estimated using the quadtree-partition-based
spatial context module [10]. The weight λ controls the
trade-off between rate and distortion items.

At the start of this stage, we load the pretrained weights
of the 1-D tokenizer [21] into the semantic branch. These
weights are fixed during this stage to maintain their initial-
ization benefits. This approach provides a strong initial-
ization, accelerating the training process and aiding faster
convergence. The semantic codebook size is set to 4096.

To prevent the detail branch from discarding excessive
information at the training beginning, we employ a multi-
stage λ strategy. Specifically, we initiate the training with
a λ value of 0.001 for the first 10,000 steps. Subsequently,
the λ value increases gradually from 2.0 to 24.0 over 90,000
steps. Finally, we maintain λ = 24.0 for the remaining
400,000 steps. We apply this strategy to all rate points
during this stage, serving as an initialization for the sub-
sequent stage. During this stage, we use randomly cropped

256× 256 images with a batch size of 16, setting the learn-
ing rate to 4.0× 10−5 with the Adam optimizer [7].

A.2. Stage 2: End-to-end Fine-tune
In this stage, we fine-tune the entire model, including all pa-
rameters in both branches, the latent adaptor, and the pixel
generator. To achieve superior reconstruction quality, we
employ the pixel-domain rate-distortion loss:

LStage-2 = Lpixel + Lcodebook + λ · R(ŷd) (2)

Here, the pixel-domain distortion loss Lpixel and the code-
book loss Lcodebook in the semantic branch are defined as:

Lpixel = ||x− x̂||+ LLPIPS(x, x̂) + λadv · Ladv(x, x̂) (3)

Lcodebook = ||sg(ys)− ŷs||+ β · ||sg(ŷs)− ys|| (4)

The term Ladv corresponds to the adaptive adversarial loss
[4], weighted by λadv = 0.8. The function sg(·) denotes the
stop-gradient operation, and the weight β is set to 0.25.

In the first 400,000 steps of this stage, we use randomly
cropped 256 × 256 images. Subsequently, we switch to
512 × 512 images for the next 400,000 steps of training.
The enlarged training image size enables the model to be
aware of cross-window interactions. In this stage, the λ val-
ues are set to {5.8, 8.5, 16.0, 28.0} for different bitrates, and
the model is trained with a learning rate of 2.0 × 10−5 and
a batch size of 8.

B. Model Architectures
We illustrate the model architecture with the detailed hyper-
parameters. Fig. 1 shows the architecture of the seman-
tic transform, the detail transform and the latent adaptor.
Fig. 2 illustrates the downsample module before the scalar
quantization and the upsample module after the quantiza-
tion within the detail branch. Lastly, Fig. 3 depicts the de-
sign of the Interactive Transform (IT) module.

In DLF, we employ a non-overlapping window partition-
ing scheme to avoid additional bitrate overhead. In future
work, it would be worthwhile to explore advanced overlap-
ping window strategies (e.g., [20]) that improve compres-
sion efficiency without introducing redundancy.
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Figure 1. Hyper-parameter settings for the detail and semantic transform blocks, as well as the latent adaptor.
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Figure 2. The structures and hyper-parameters of the downsample
and upsample modules within the detail branch.

C. Experiments
C.1. Evaluation details
Evaluation of third-party models. We evaluate TCM [14],
HiFiC [16], and MS-ILLM [17] by utilizing their official
codes and fine-tuning their pretrained models (at the lowest
bitrate) to achieve extremely low bitrate ranges. For Dif-
fEIC [11], we employ their released models for evaluation.
In the case of PerCo [3], we rely on a third-party imple-
mentation [9] for evaluation due to the absence of official
code. Similarly, GLC [6] and RDEIC [12] also lack public
code. For GLC, we obtain the evaluation results through
the personal communication with the authors. For RDEIC
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Figure 3. Hyper-parameter settings for the Interactive Transform
(IT) block.
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Figure 4. Rate-KID curves on the CLIC2020 and the MS-COCO
30K datasets.

and HybridFlow [15], we derive the number from their pub-
lished papers, since there are no code or data available.
Measurement of FID and KID. For the CLIC2020 test
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Figure 5. Comparison of methods on the DIV2K dataset [1].
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Figure 6. Comparison of methods measured by PSNR and MS-SSIM.

dataset [18] with full resolution, the FID [5] and KID [2]
metric is evaluated by splitting the images into overlapped
256 × 256 patches, following the method in HiFiC [16].
This setting is also applied to the CLIC2020 test dataset
with 768×768 resolution, in accordance with the condition
in DiffEIC [11]. For the MS-COCO 30K dataset [13], we
directly evaluate the FID and KID on 512× 512 resolution.

C.2. Quantitative Results

We provide the additional KID [2] results on the CLIC2020
and the MS-COCO 30K datasets on the Fig. 4. We present

the evaluation results on the DIV2K dataset [1] at full reso-
lution in Fig. 5. Large version of the rate-distortion curves
is shown in Fig. 12. Diffusion-based methods [3, 11] are
excluded from evaluation on this dataset due to their large
memory requirements, which exceed the capacity of our
GPU (A100 with 40GB memory). From Fig. 5, we can
see that our method outperforms MS-ILLM [17] across all
reference and no-reference perceptual metrics, demonstrat-
ing its effectiveness. Additionally, we evaluate traditional
pixel-level distortion metrics, PSNR and MS-SSIM [19],
for a more comprehensive analysis, as shown in Fig. 6. It is



Table 1. Complexity analysis with model param count.
Model Params Enc. Time (s) Dec. Time (s) BD-Rate
MS-ILLM 181M 0.064 ± 0.010 0.070 ± 0.011 0.00%
PerCo 1.3B + 3.8 B∗ 0.461 ± 0.017 2.443 ± 0.011 -4.02%
DiffEIC 1.4B 0.152 ± 0.014 4.093 ± 0.042 14.67%
DLF 1.2B 0.178 ± 0.015 0.252 ± 0.014 -67.82%
* Open-sourced PerCo includes an additional 3.8B BLIP2 caption model.

worth noting that at extreme low bitrates, pixel-level distor-
tion becomes too severe (e.g., the PSNR of VTM drops be-
low 25 dB), making these metrics less meaningful for eval-
uating visual quality. Although our model does not exhibit
the best pixel-level distortion metrics, it still provides the
most visually appealing reconstructions with high fidelity,
as demonstrated in previous sections.

C.3. Qualitative Results
In this section, we provide more visual examples across the
CLIC2020 [18] (Full resolution: Fig. 7, 8, 9; 768×768: Fig.
10) and MS-COCO 30K [13] (Fig. 11) datasets. From these
examples, we can find that DLF achieves the best quality
with the lowest bitrate cost.

C.4. Complexity Analysis
Table 1 summarizes the coding time, model size, and BD-
Rate comparison on the Kodak dataset. Compared to
diffusion-based codecs, DLF delivers superior compres-
sion performance while being considerably more efficient
in both model complexity and runtime. Notably, DLF elim-
inates the need for iterative denoising, resulting in substan-
tially faster decoding. These results highlight the effective-
ness of our design in improving parameter efficiency and
reducing computational overhead.
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Figure 7. Qualitative examples on the CLIC2020 dataset (full resolution).
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Figure 8. Qualitative examples on the CLIC2020 dataset (full resolution).
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Figure 9. Qualitative examples on the CLIC2020 dataset (full resolution).
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Figure 10. Qualitative examples on the CLIC2020 dataset (768×768).
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Figure 11. Qualitative examples on the MS-COCO 30K dataset.
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Figure 12. Rate-distortion curves on the Kodak, the CLIC2020 and the MS-COCO 30K datasets.
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