Pretrained Reversible Generation as
Unsupervised Visual Representation Learning

Appendix

A. Why PRG is effective?

What a model can generate, it can understand: pixel-perfect
reconstruction means the visual breadcrumbs are all there.
It just needs a bit of fine-tuning to tie the generative path-
way to the labels. Raw-image baselines often fall prey to
“shortcut learning”. Because neighboring feature pixels have
heavily overlapping receptive fields, the network may rely
on trivial cues and end up with weak representations. In
contrast, PRG reuses the pretrained reverse generative path-
way, recycling each ODE-solver output as the input for the
next iteration. This loop drives feature extraction at a se-
mantic level without losing low-level detail and the injected
noise perturbations make the representations significantly
more robust. Sec. 4.3.2 show that every point along the tra-
jectory possesses strong representational capacity, and the
OOD experiments also provide compelling evidence for this
claim.

In the first pre-training stage, since no downstream task in-
formation is available, it remains unclear which features are
most relevant. Consequently, no compression is performed
during pre-training. Instead, the model aims to approxi-
mate the optimal representation as closely as possible in the
absence of downstream information by leveraging uncon-
ditional flow matching to learn representations, effectively
maximizing the lower bound of mutual information.

According to the manifold assumption [46, Chapter 20],
data lies on a low-dimensional manifold M of intrinsic di-
mension d*, which is significantly smaller than the ambient
dimension D. Although, in theory, intermediate latents en-
code the same information as the original data, using these
latents as inputs for downstream tasks is more meaningful.
A well-trained flow model effectively extracts data from
the low-dimensional manifold M and lifts it to the ambient
space RP, ensuring that every sample in R remains seman-
tically meaningful. In contrast, directly sampling from the
original data space does not necessarily preserve semantic
coherence. For instance, generating a 64 x 64 image by
sampling from a 64 x 64 multivariate Gaussian distribution
would typically result in a meaningless noise-like image
resembling a snowflake pattern.

Moreover, since the flow trajectories of an ordinary differ-
ential equation (ODE) do not intersect [11], points within a
given region remain confined, thereby preserving topological
relationships throughout the transformation process.

Subsequent fine-tuning for downstream tasks is equally
crucial. By adopting techniques such as optimal transport
matching and gradient guidance, the model undergoes ef-

ficient adaptation, selectively discarding redundant infor-
mation while selecting and enhancing task-critical features.
As shown in Figure 4, mutual information decreases during
fine-tuning, whereas task accuracy improves.

A.1. What’s the difference between fine-tuning and
training a classifier based on the ODE archi-
tecture?

The effectiveness of fine-tuning depends significantly on
whether the model undergoes pre-training beforehand. If
a classifier is trained directly using the ODE architecture
without pre-training, the model must learn meaningful in-
termediate latents solely through a supervised loss. This
approach often fails, as the model struggles to discover good
latent representations in the absence of prior knowledge. Our
experiments (Appendix A.1.1) also confirm that this method
performs poorly.

In contrast, pre-training allows the model to extract a rich
set of useful features as intermediate latents. During fine-
tuning, the model can then selectively retain and enhance
features relevant to downstream tasks while compressing
redundant information in the latent space. This process leads
to a more effective and structured representation, ultimately
improving downstream task performance.

A.1.1. Comparison with Generation without pre-training

We compare PRG with classifiers trained without generative
pre-training. To ensure fairness, we train the latter model
for 600 epochs until its performance no longer improves. As
shown in Tab. 1, PRG without pre-training, relying solely on
a single supervision signal, may discard useful information,
leading to suboptimal performance. This highlights that
the intermediate latent variables of a pretrained flow model
provide a strong initialization, requiring only slight fine-
tuning for optimal feature extraction.

CIFAR-10 Tiny-ImageNet ImageNet
PRG w/o pre-training 0.70 0.35 0.42
PRG 0.97 0.71 0.78

Table 1. Effect of pre-training: Performance comparison of PRG
with and without pre-training on the CIFAR-10 and Tiny-ImageNet.

A.2. Model-agnosticity

Our method follows the model-agnostic principle as de-
fined in Appendix D.5 of [57], where different architectures

achieve comparable encoding quality through flow match-
ing. This indicates that architectural constraints stem from
implementation choices rather than the framework itself.

Notably, while early diffusion models primarily relied on
U-Nets for practical stability, recent work [3] has demon-
strated that flow matching can be successfully achieved
with minimal architectural requirements, such as shallow
skip connections. In this work, we achieve state-of-the-
art performance across both U-Net (Sec. 4.4.1) and Trans-
former (Sec. 4.4.3) architectures, further validating the gen-
erality of our approach.

A.3. Infinite-Layer Expressiveness

The infinite-layer extractor boosts accuracy by extending
training rather than inference steps (Fig.6: CIFAR 0.46 vs.
0.97, Tiny 0.19 vs. 0.71). However, gains plateau after a
certain point, with more complex datasets requiring longer
training for optimal performance. Meanwhile, the optimal
flow-matching setup achieves full experimental coverage in
just 5 inference steps. Full evaluation takes 3 seconds for
CIFAR and 9 s for the Tiny-ImageNet testing set.

B. Additional Implementation Details

B.1. Training Process Details

Tabs. 2 and 3 list the hyperparameters used for both
pre-training and fine-tuning across the CIFAR-10, Tiny-
ImageNet, and ImageNet datasets.

Dataset CIFAR-10 Tiny-ImageNet ImageNet
GPU 8xA100 8xA100 8xA100
Optimizer Adam Adam Adam
LR base le-4 le-4 le-4
Epochs 1000 1000 2000
Batch Size 256 128 128

Table 2. Experimental settings across datasets for pre-training.

To enhance the reproducibility of results across various
multi-stage and multi-GPU experiments, we calculate the
learning rate using Eq. (1).

num processes X Batch Size

512
num processes X Batch Size

512
num processes X Batch Size

512

LR = LRpase X

Warmup LR = Warmup LR, X

Min LR = Min_LRpge X

(1
B.2. Evaluation of Training Efficiency

Most research experiments, including the main experiments
and ablation studies, are completed within several hours. To
demonstrate training efficiency concretely, Tab. 4 reports the

Dataset CIFAR-10 Tiny-ImageNet = ImageNet
GPU 4xA100 8xA100 32xA100
Optimizer AdamW AdamW AdamW
Eps le-8 le-8 le-8
Betas (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
LR base 1.25e-4 1.25e-4 1.25e-4
Weight Decay 0.05 0.05 0.05
Scheduler CosineLR CosineLR CosineLR
Warmup LR base 1.25e-7 1.25e-7 1.25e-7
Min LR base 1.25e-6 1.25e-6 1.25e-6
Epochs 200 200 200
Warmup Epochs 5 10 10
Image Size 32 64 64
Batch Size 256 128 128

T Span 20 32 64
Solver Euler Euler Euler

Table 3. Experimental settings across datasets for fine-tuning.

run-time per epoch for each data set used in our experiments.

tspan/teutott CIFAR-10 TinyImageNet ImageNet*
20/5 49s 307s N/A
20/10 103s 681s 2220s
20 187s 1437s 3480s
32/16 170s 1137s N/A

Table 4. Mean time cost per epoch during the training process. *
means that the model is trained on 4x8 A100 GPUs. ¢4y, represents
the total sampling length, while ¢cuofr indicates the point along the
trajectory where fine-tuning begins. For example, 20/10 means a
trajectory spanning 20 steps from g to 1, with fine-tuning starting
from the midpoint of the trajectory.

B.3. Evaluation of Inference Efficiency

Table 5 presents the inference efficiency of our method on
the CIFAR-10 and Tiny-ImageNet test sets.

Model CIFAR-10 (s) Tiny-ImageNet (s)
PRG-GVP-S 4 10
PRG-ICFM-S 3 9
PRG-OTCFM-S 3 8

Table 5. Mean inference time per epoch on the CIFAR-10 and
Tiny-ImageNet test datasets.

C. Ablation Studies
C.1. Loss Type

Tab. 6 shows the results of different loss types. Compared
to the standard cross entropy loss, label smoothing reduces
overconfident predictions, improves model calibration, and
improves robustness.

Dataset LabelSmooth Loss Cross-Entropy Loss
CIFAR-10 97.59 96.18
TinyImageNet 71.12 70.15

Table 6. (Loss Type) Comparison of LabelSmooth Loss and Cross-
Entropy Loss on different datasets.

C.2. ODE Solver Type

During fine-tuning, we evaluated different ODE solvers for
the reverse process: Euler (first-order), Midpoint (second-
order via midpoint evaluations), RK4 (fourth-order Runge-
Kutta), and Dopri5 (adaptive step sizes with a fifth-order
method). Tabs. 7 and 8 compares their performance on the
Cifar-10, Tiny-ImageNet dataset. The results show no sig-
nificant performance differences, underscoring the method’s
consistent effectiveness across various solvers.

solver_type Euler Midpoint RK4

OTCFM 97.65 97.63 97.66 97.72
ICFM 97.59 97.55 97.56 97.61
GVP 97.35 97.30 97.32 9741

Dopri5

Table 7. (ODE Solver) Performance of various solvers on Cifar-10.
Different solvers don’t yield obvious differences.

Solver Type Midpoint RK4

PRG-OTCFM 71.33 71.29 71.30 71.36
PRG-ICFM 71.12 71.11 71.13 71.23
PRG-GVP 70.89 70.99 70.84 70.85

Euler Dopri5S

Table 8. (ODE Solver) Performance of various solvers on Tiny-
ImageNet. Different solvers don’t yield obvious differences.

C.3. Details of Out-of-Distribution Experiments

There is no direct correspondence between the test images
of Tiny ImageNet and Tiny ImageNet-C, and the images in
Tiny ImageNet-C do not overlap with the training images of
Tiny ImageNet. We report the comparative results on Tiny
ImageNet-C in Tab. 9.

Tiny-ImageNet-C

Method Clean Average Corruption-5
Adversarial Training

PGD [43] 51.08 33.46 L 17.62 24.00 | 27.08
PLAT [31] 51.29 37.92113.37 29.05] 22.24
Noise Injection

RSE [37] 53.74 2799 2575 18.92 | 34.82
ENResNet [65] 49.26 25.83 12343 19.01 | 30.25
Data Augment

AugMix [25] 52.82 37.74 1 15.08 28.66 | 24.16
AutoAug [15] 52.63 35.14 | 17.49 25.36 | 27.27
Generative Methods

PDE+[70] _ 93.72 394141431 30.32 23.40
PRG-ICFM-S (ours) 56.85 46.93 | 9.92 33.32 | 23.53

Table 9. (OOD: extrapolated datasets) Performance on Tiny-
ImageNet-C.Averge represents the accuracy across all corruption
levels, with corruption severity ranging from 1 to 5.

C.4. The Number of Timesteps

Our findings in Tab. 10 show that longer time spans generally
lead to better accuracy. On CIFAR-10 with the ICFM flow
model, a t-span of 10 achieves accuracy comparable to the
best result at ¢ = 100. In contrast, TinyImageNet requires a
t-span of 15 to achieve similar performance.

T-span 2 5 10 50 100
GVP CIFAR-10 30.54 90.23 93.26 97.50 97.55
GVP Tiny ImageNet 5.06 48.95 53.24 T71.05 71.18
ICFM CIFAR-10 31.18 9235 97.02 97.60 97.61

ICFM Tiny ImageNet 6.01 60.06 65.16 71.20 71.58

Table 10. Comparison of Performance Over Varying Time Spans.

D. Reverse Generation Process

Fig. 1 illustrates the reverse generation process from x to
x after fine-tuning. Furthermore, Figs. 2 and 3 present the
reverse generation results on the TinyImageNet dataset after
pre-training and fine-tuning, respectively. Finally, Fig. 4
demonstrates the reverse process before and after applying
fog corruption to the images.

Figure 1. Reverse Generation Process on the Swiss Roll Dataset. Each color represents a different class. After diffusion, samples from the
same class become more clustered, while the previously unoccupied white space, corresponding to out-of-class regions, is pushed outward.

Figure 2. Reverse Generation Process on the TinyImageNet val set. The first row represents the fully pretrained reverse generative process,
the second row shows the reverse generative process after extensive fine-tuning.

Figure 3. Reverse Generation Process on the TinyImageNet train set. The first row represents the fully pretrained reverse generative process,
the second row shows the reverse generative process after extensive fine-tuning.

Figure 4. Reverse Generation Process on the TinyImageNet-C Dataset. The first row represents the fully pretrained reverse generative
process, the second row shows the reverse process after extensive fine-tuning, and the third row illustrates the reverse generative process
under fog corruption.

	Introduction
	Related Work
	Method
	Pretrained Reversible Generation Framework
	Pretrained Reversible Generation Mechanism
	Advantages

	Experiments
	Settings
	baselines
	Verification Analysis
	Better Pre-training Lead to Better Fine-tuning?
	What is a Reasonable Fine-tuning Strategy?
	Is the Model a Continuous Feature Extractor?

	Main Results
	Performance on Image Classification
	Out-of-Distribution Robustness
	Transferring Features

	Ablation Studies
	Generative Model Type
	Effect of on Accuracy
	Scaling Up Network Parameters

	Conclusion
	Why PRG is effective?
	What’s the difference between fine-tuning and training a classifier based on the ODE architecture?
	Comparison with Generation without pre-training

	Model-agnosticity
	Infinite-Layer Expressiveness

	Additional Implementation Details
	Training Process Details
	Evaluation of Training Efficiency
	Evaluation of Inference Efficiency

	Ablation Studies
	Loss Type
	ODE Solver Type
	Details of Out-of-Distribution Experiments
	The Number of Timesteps

	Reverse Generation Process

