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A. Overview
In this supplementary material, we first provide more quan-

titative and qualitative analyses of our proposed SDFormer,

along with some experimental comparison results. Next,

we include additional implementation details, such as de-

scriptions of the metrics and details of the training process.

Finally, we will discuss the limitations of our work and out-

line directions for future research in the last section.

B. Additional results
B.1. More Quantitative Results
In this section, we present quantitative results of our method

on the SemanticKITTI validation set in Table 1, comparing

it with the state-of-the-art camera-based methods for a more

comprehensive evaluation. Compared to other baselines,

our method achieves significant improvements in mIoU,

demonstrating its effectiveness in semantic scene comple-

tion. Additionally, the significant improvement in mIoU

also demonstrates the superiority of our constructed se-

mantic volume. Specifically, our method shows notable

improvements in capturing structured objects (e.g., roads,

sidewalks, buildings) and some small objects (e.g., poles

and traffic lights).

B.2. More Qualitative Results
We report more qualitative results in Figure 1. It can be

observed that, compared to other camera-based methods,

our approach shows significant improvements, especially

in cluttered scene layouts and occluded areas. As seen in

the third row and the sixth and seventh rows of the figure,

our results are closer to the ground truth at intersections.

Additionally, in terms of long distances, both quantitative

and qualitative analyses show that SDFormer predicts more

complete and accurate results. For example, the cars in the

first and second rows and the distant trees have clearer seg-

mented outlines.

*Corresponding authors.

B.3. More Experiment Results
B.3.1. Effect of the SAM model type
The Table 2 shows that using larger SAM model types

can enhance overall performance, but it also significantly

increases the model’s parameter count. Additionally, it

demonstrates that SAM’s performance can affect the over-

all model performance. Moving forward, we will focus on

further optimizing the use of Vision Foundation Models.

B.3.2. Ablation study for Semantic Calibration Affinity
In the Table 3, we conduct additional ablation experiments

on the Semantic Calibration Affinity (SCA) module to vali-

date our choice of layer configuration. We see that while

different layer counts yield comparable IoU values, the

mIoU differs. Using two transformer layers achieves a good

balance in model performance.

B.3.3. Ablation study for Cross Attention fusion schemes
In the Table 4, we ablated the cross-attention mechanism

for the final two voxel fusions, using simpler addition and

multiplication fusion methods. This resulted in a signifi-

cant drop in mIoU, indicating that the two voxels still ex-

perience information misalignment. Our adaptive cross-

attention mechanism better integrates features from the two

different types of voxels.

C. Implementation Details
C.1. Metrics
Following [8], the main consideration of SSC is the mean

Intersection over Union (mIoU), which considers the IoU

of all semantic classes for prediction without considering

the free space. The mIoU is calculated by:

mIoU =
1

C

C∑

c=1

TPc

TNc + FPc + FNc
(1)

where TPc, TNc, FPc, and FNc are the true positives,

ture nagatives, false positives and false negatives predic-
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LMSCNet[7]† 28.61 40.68 18.22 4.38 0.00 10.31 18.33 0.00 0.00 0.00 0.00 13.66 0.02 20.54 0.00 0.00 0.00 1.21 0.00 0.00 6.70

AICNet[5]† 29.59 43.55 20.55 11.97 0.07 12.94 14.71 4.53 0.00 0.00 0.00 15.37 2.90 28.71 0.00 0.00 0.00 2.52 0.06 0.00 8.31

JS3C-Net[12]† 38.98 50.49 23.74 11.94 0.07 15.03 24.65 4.41 0.00 0.00 6.15 18.11 4.33 26.86 0.67 0.27 0.00 3.94 3.77 1.45 10.31

MonoScene[1] 37.12 57.47 27.05 15.72 0.87 14.24 23.55 7.83 0.20 0.77 3.59 18.12 2.57 30.76 1.79 1.03 0.00 6.39 4.11 2.48 11.50

TPVFormer[3] 35.61 56.50 25.87 20.60 0.85 13.88 23.81 8.08 0.36 0.05 4.35 16.92 2.26 30.38 0.51 0.89 0.00 5.94 3.14 1.52 11.36

OccFormer[13] 36.50 58.85 26.88 19.61 0.31 14.40 25.09 25.53 0.81 1.19 8.52 19.63 3.93 32.62 2.78 2.82 0.00 5.61 4.26 2.86 13.46

VoxFormer-S[6] 44.02 54.76 26.35 15.50 0.70 17.65 25.79 5.63 0.59 0.51 3.77 24.39 5.08 29.96 1.78 3.32 0.00 7.64 7.11 4.18 12.35

VoxFormer-T[6] 44.15 53.57 26.52 19.69 0.42 19.54 26.54 7.26 1.28 0.56 7.81 26.10 6.10 33.06 1.93 1.97 0.00 7.31 9.15 4.94 13.35

HASSC-T[9] 44.58 57.23 29.08 19.89 1.26 20.19 27.33 17.06 1.07 1.14 8.83 27.01 7.71 33.95 2.25 4.09 0.00 7.95 9.20 4.81 14.74

Symphonies[4] 41.92 56.37 27.58 15.28 0.95 21.64 28.68 20.44 2.54 2.82 13.89 25.72 6.60 30.87 3.52 2.24 0.00 8.40 9.57 5.76 14.89

H2GFormer-T[10] 44.69 57.00 29.37 21.74 0.34 20.51 14.29 6.80 0.95 0.91 9.32 27.44 7.80 36.26 1.15 0.10 0.00 7.98 9.88 5.81 14.29

SDFormer (ours) 45.65 64.67 33.20 22.16 0.02 25.35 33.75 20.09 3.25 3.13 9.56 26.93 9.07 38.99 2.94 2.72 0.00 11.42 11.98 7.27 17.18

Table 1. Quantitative results on the SemanticKITTI validation set. † represents the results obtained when these methods use RGB inputs,

which are implemented and reported in MonoScene [1]. The best results are in Bold.

SDFormer Setting IoU(%)↑ mIoU(%)↑ #Param

+ ViT-L 45.96 17.36 308M

+ ViT-B 45.65 17.18 91M

Table 2. Ablation study for SAM model type.

SCA Setting
IoU(%)↑ mIoU(%)↑

TransFormer Layer

0 44.81 16.66

1 45.87 16.65

2 45.65 17.18
3 45.55 16.55

Table 3. Comparison with the different number of transformer

layers in the SCA module on model performance on the Se-

manticKITTI validation set.

Setting IoU(%)↑ mIoU(%)↑
Add-Conv Fusion 45.72 16.74

Multiplicative Fusion 45.90 16.60

Cross Attention (Ours) 45.65 17.18

Table 4. Ablation study for other fusion schemes on the Se-

manticKITTI validation set.

tions for class c. Note the strong interaction between IoU

and mIoU, as better geometric estimation (i.e., high IoU)

can be achieved by invalidating semantic labels (i.e., low

mIoU).

Methods
Inference Inference

FLOPs IoU(%) mIoU(%)
Mem.(M) Times(s)

TPVFormer 6391 0.295 1031G 34.25 11.26

OccFormer 7454 0.258 969G 36.50 13.46

BRGScene 6172 0.315 1518G 43.85 15.43

HTCL-S 10408 0.357 1924G 45.51 17.13

SDFormer(Ours) 8994 0.376 1748G 45.65 17.18

Table 5. Efficiency analysis on SemanticKITTI val set.

C.2. Semantic Constructor More details

According to the method in [11], when we input the image

Il and its segmentation feature map Isam, we treat Isam as

an augmented version of Il and experiment with Isam for

supervision. Following [2], for each pixel we optimize the

loss for the best matching source image use a form of self-

supervision,

Lp = min
n

pe(Il, Isam) (2)

where pe as a combination of SSIM and L1 losses. Next,

we define a set of ordered planes P , each perpendicular to

the optical axis, linearly spaced between depths dmin and

dmax. The image is encoded into a depth feature map Fd,

which is distorted to its viewpoint using each assumed alter-

native depth d ∈ P and the already estimated relative posi-

tions. This generates a distorted feature map Fwarp, and the

absolute difference between features distorted at each depth

and those from Il constructs the final cost volume.



D. Limitation and Future Works
As shown in Table 5, our method slightly increases the

burden, which brings corresponding performance improve-

ment, which is acceptable. Even compared with the latest

sota HTCL-S, using multi-frame input, SDFormer outper-

forms it in both memory consumption and performance.

Although SDFormer demonstrates strong performance in

benchmarks, the model’s inference speed can still be im-

proved. Since SSC is primarily used in autonomous driv-

ing or unmanned systems, a lightweight network would be

suitable for various hardware for deployment. Therefore,

we take model lightweight as the future work to make the

model more conducive to downstream applications.
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Figure 1. The visual results of our SDFormer and the state-of-the-art methods on the SemanticKITTI validation set. Please zoom in for

details.


