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A1. Additional results

A1.1. Visual quality metrics
Although FVD is a widely used metric for visual quality
in the community, its ability to assess the faithfulness of
motion as opposed to the appearance of individual frames is
sometimes argued [3, 4, 8]. For that reason, we also evaluate
the quality of different models using a recently proposed
JEDi (JEPA Embedding Distance) metric [7, v.0.1.3]. JEDi
reportedly demonstrates much better correlation with the
human preference than FVD. Since Luo et al. [7] have not
recommended guidelines for comparison between generative
models using their metric, we opted for the setup similar to
FVD computation [2, 9]. In detail, we used the same set of
clips from UCF-101, and similarly downsampled the videos
to the resolution closest to 320×240, preserving the original
aspect ratio, with the central crop afterwards. In Tab. A1 we
provide the extended quantitative results. We observe that
in general the new metric is better aligned with architecture
optimizations that we apply.
In Tab. A2 we report the full set of metrics measured by
VBench-I2V except for ‘camera motion’ dimension. The
reason is that due to the lack of textual prompting, SVD-
based models generate random camera trajectories.

A1.2. Decoding latents
As our approach stems from SVD, the presented MobileVD
is also a latent model. Therefore, each generated latent code
must be decoded to raw RGB pixels. For all the experiments
reported in the main text, we used the native autoencoder
weights released alongside the SVD model itself. The decod-
ing was conducted independently for each frame. Notably,
this model is relatively slow on device: it takes 91.5 ms
per frame, resulting in 1,280 ms for decoding the full gen-
erated video. This timing is comparable with the latency
of MobileVD (1,780 ms). As an alternative, we used the
decoder from TAESD autoencoder1. It is significantly faster
on a smartphone: 6.4 ms per frame, or 90 ms for the full
video. At the same time, the difference in quality metrics is
negligible, see Tab. A3.

A2. Additional details

A2.1. Training
For diffusion training, we used AdamW optimizer [6] with
learning rate of 1× 10−6 and weight decay 1× 10−3, while

1https://huggingface.co/madebyollin/taesd/tree/
614f768

other hyperparameters were default. During adversarial fine-
tuning, we also used AdamW. For generator the learning
rate was equal to 1.25× 10−6, and for discriminator we set
it 10 times higher. For logits of importance values, used
for pruning of temporal blocks, learning rate was equal to
1× 10−3. Momentum weights for both optimizers we set as
follows β1 = 0.5, β2 = 0.999. For generator, the weights
for adversarial and pseudo-Huber loss were equal to 1 and
0.1 respectively. For discriminator, weight of R1 penalty
was 1 × 10−6, and we applied it once per 5 iterations, as
recommended in [5].
In addition to our main effort to port the SVD model on a
mobile phone, we tested if our set of optimizations can be ap-
plied to a high-resolution model. For this purpose, we trained
a model called MobileVD-HD which is capable of gener-
ating 14-frame videos with spatial size of 1024 × 576 px.
Architecture hyperparameters used to finetune MobileVD-
HD, i.e. temporal multiscaling factor, fun-factor and number
of pruned temporal blocks, were the same as for our low-
resolution MobileVD. As was shown in the main text, it
achieves visual quality on par with SF-V while decreasing
its GPU latency by 40%. For high-resolution training, the
first (diffusion) stage lasted for 10k iterations with total batch
size of 4. The second (adversarial) stage comprised 30k iter-
ations with batch size of 2. The learning rates for adversarial
finetuning were twice as lower as for low-resolution case,
except for the learning rate of importance values. R1 penalty
was applied at each step. Other training aspects were the
same both for MobileVD and MobileVD-HD.

A2.2. Channel funnels

Attention layers. Consider a query and key projection
matrices in a self-attention similarity map computation,
XWq (XWk)

T with layer input X having a shape of L×cin,
and Wq and Wk of cin × cinner. With funnel matrices Fq and
Fk of size cinner × c′, we modify the aforementioned bilinear
map as XWqFq (XWkFk)

T
= XWqFqF

T
k WT

k XT . We
apply our coupled singular initialization (CSI) by setting
Fq = W †

qUc′Σ
1/2
c′ and Fk = W †

kVc′Σ
1/2
c′ . For value and

output projections matrices the initialization is applied in the
way discussed in the main text.
Convolutional layers. Applying the same initialization to a
pair of convolutional layers is not straightforward. Weight
tensors of 2D convolutional layers are 4-dimensional, and
therefore computation of the effective weight tensor is not
obvious. However, we make use of the following observation.
Consider input tensor X with shape h× w × cin. We refer
to its 2-dimensional pixel coordinate as p⃗, and therefore Xp⃗
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Model NFE FVD ↓ JEDi ↓ TFLOPs ↓ Latency (ms) ↓
25 FPS 7 FPS 25 FPS 7 FPS GPU Phone

Resolution 1024 × 576
SVD 50 140 149 0.61 0.59 45.43 376 OOM
MobileVD-HD 1 126 184 0.96 1.75 23.63 227 OOM
Resolution 512 × 256
SVD 50 366 476 1.05 1.14 8.60 82 OOM
+ low-resolution finetuning 50 194 196 0.71 0.65 8.60 82 OOM
+ optimized cross-attention 50 194 196 0.71 0.65 8.24 76 3630
+ adversarial finetuning 1 133 168 0.66 0.71 8.24 76 3630
+ temporal multiscaling 1 139 156 0.83 0.81 5.42 59 2590
+ temporal block pruning 1 127 150 0.97 1.32 4.64 47 2100
+ channel funneling 1 149 171 1.07 1.21 4.34 45 1780

Table A1. Effect of our optimizations. We successfully deployed the image-to-video model to a mobile device without significantly
sacrificing the visual quality. FLOPs and latency are provided for a single function evaluation with batch size of 1. We call the model in the
bottom row Mobile Video Diffusion, or MobileVD. The model trained with the same hyperparameters but intended for high-resolution
generations is referred to as MobileVD-HD.

Model Motion I2V I2V Subject Background Aesthetic Imaging Temporal Motion Dynamic
bucket Subject Background Consistency Consistency Quality Quality Flickering Smoothness Degree

SVD (original) 127 93.48 94.74 96.76 96.84 53.59 63.49 95.35 97.29 95.69
SVD (finetuned) 20 95.72 96.36 98.87 98.23 54.91 65.17 98.47 99.16 16.26
SVD (finetuned) 40 95.24 96.04 98.29 97.70 54.62 65.16 97.34 98.78 65.04
MobileVD 20 93.68 94.30 97.22 96.57 53.69 67.16 97.06 98.43 68.21
MobileVD 40 92.98 93.93 96.18 95.95 53.19 67.46 96.00 97.96 95.77

Table A2. Full VBench-I2V evaluation.

Decoder FVD ↓ JEDi ↓ Latency
(ms) ↓25 FPS 7 FPS 25 FPS 7 FPS

Original decoder 149 171 1.07 1.21 1280
TAESD decoder 149 179 1.05 1.21 90

Table A3. Impact of latent decoder. While being significantly
faster on device, decoder from TAESD has little to no impact on
visual quality as measured by FVD and JEDi.

is a vector with cin entries. Let W be a convolutional kernel
with size kh × kw × cout × cin, and we refer to its spatial
2-dimensional coordinate as q⃗, while q⃗ = 0 is a center of a
convolutional filter. For j-th output channel, Wq⃗,j is also a
vector with cin entries. The layer output Y ∈ Rh×w×cout can
be computed as

Yp⃗,j =
∑

q⃗
⟨Wq⃗,j , Xp⃗+q⃗⟩ , (A1)

where ⟨·, ·⟩ denotes inner product. Simply speaking, this
means that convolution can be treated as a linear layer with
weight matrix of shape cout × (kh · kw · cin) applied to each
flattened input patch.
At the same time, another way of reshaping the kernel is also
possible. Consider a tensor E of shape kh×kw×cout×h×w

defined as
Eq⃗,j,p⃗ = ⟨Wq⃗,j , Xp⃗⟩ . (A2)

In other words, the convolution kernel reshaped as
(kh · kw · cout)× cin is multiplied by features of each input
pixel. Then Eq. (A1) can be rewritten as

Yp⃗,j =
∑

q⃗
Eq⃗,j,p⃗+q⃗ =

∑
q⃗
⟨Eq⃗,j , δp⃗+q⃗⟩ , (A3)

where δ is a 4-dimensional identity tensor, i.e. δu⃗,v⃗ = 1 if
u⃗ = v⃗ and 0 otherwise.
Having said that, a sequence of two convolutions can be
presented as (i) flattening the input patches; (ii) matrix multi-
plication by the first kernel reshaped according to Eq. (A1);
followed by (iii) matrix multiplication by the second kernel
reshaped as in Eq. (A2); and with (iv) independent of ker-
nels operation described by Eq. (A3) afterwards. Therefore,
coupled singular initialization can be applied to the product
of matrices used in steps (ii) and (iii). We follow this ap-
proach and introduce funnels to the pairs of convolutions
within the same ResNet block of denoising UNet.

A2.3. Pruning of temporal adaptors

Practical considerations. In the main text we described
that we transform the update rule of the temporal block as
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follows xs+ ẑ (1− α) rt, where xs and rt are outputs of the
spatial and temporal layers respectively, α is the learnable
weight, and ẑ is a zero-one gate multiplier. Note that if the
temporal block is pruned, i.e. ẑi = 0, then the gradient of the
loss function w.r.t. the temporal block’s learnable parameters
equals zero. This affects the gradient momentum buffers
used by optimizers. For that reason, we do no update the
momentum of the temporal block’s parameters in case it
has been pruned by all the devices at current iteration of
multi-GPU training.

In the network, we parametrize the importance values qi with
the sigmoid function with fixed temperature value of 0.1. In
the same way weight coefficients αi were reparametrized.
For faster convergence, each value qi is initialized with the
weight of the corresponding temporal block, i.e. 1− αi. We
also found necessary to set the learning rate for the logits of
importance values qi significantly higher than for the other
parameters of the denoising UNet.

Constrained optimization. As discussed in the main text,
we relate the importance values of temporal blocks {qi}Ni=1

to their inclusion probabilities for sampling without replace-
ment {pi}Ni=1 by solving the following constrained optimiza-
tion problem:

min
c,{pi}i

∑
i
(pi − cqi)

2
,

s.t.
∑

i
pi = n,

0 ≤ pi ≤ 1.

(A4)

To solve it, we employ the common method of Lagrange
multipliers assuming that all q-values are strictly positive.
W.l.o.g. we consider the case of sorted values {qi}i, i.e. q1 ≥
q2 ≥ · · · ≥ qN > 0. In detail, we define a Lagrangian

L(c, {pi}i , λ, β, {γi}i , {δi}i)

= λ
∑

i
(pi − cqi)

2

+ β
(∑

i
pi − n

)
+
∑

i
γi (−pi)

+
∑
i

δi (pi − 1)

(A5)

and aim to solve the following system of equalities and

inequalities

∂L

∂pi
= 2λ (pi − cqi) + β − γi + δi = 0 ∀i, (A6)

∂L

∂c
= 2λ

∑
i
(cqi − pi) qi = 0, (A7)∑

i
pi = n, (A8)

γipi = 0 ∀i, (A9)
δi (pi − 1) = 0 ∀i, (A10)
γi, δi ≥ 0 ∀i, (A11)

λ2 + β2 +
∑

i

(
γ2
i + δ2i

)
> 0. (A12)

Case λ = 0. In this case ∀i γi − δi = β = const. If β > 0,
then ∀i γi > δi ≥ 0 ⇒ γi > 0 ⇒ pi = 0, which leads to a
contradiction. Cases β < 0 and β = 0 also trivially lead to
contradictions.
Case λ = 1. First, we derive that c

∑
i q

2
i =

∑
i piqi, and

thus

c =

∑
i piqi∑
i q

2
i

> 0. (A13)

Since ∀i ∂L
∂pi

= 0, then
∑

i qi
∂L
∂pi

= 0.

∑
i
qi
∂L

∂pi
(A14)

= 2
∑

i
qi (pi − cqi) + β

∑
i
qi −

∑
i
qi (γi − δi)

(A15)

= β
∑

i
qi −

∑
i
qi (γi − δi) (A16)

= 0, (A17)

and therefore,

β =

∑
i qi (γi − δi)∑

i qi
. (A18)

Lemma A2.1. For all indices i it holds true that γi = 0.

Proof. Proof is given by contradiction. Let us assume that
∃k γk > 0 ⇒ pk = 0 ⇒ δk = 0 ⇒ −2cqk + β − γk =
0 ⇒ β = 2cqk + γk > 0. Then for any index j such that
j > k and, consequently, qj ≤ qk, the following equality
holds true:

2 (pj − cqj) + β − γj + δj (A19)
= 2 (pj − cqj) + 2cqk + γk − γj + δj (A20)
= 2pj + 2c (qk − qj) + (γk − γj) + δj (A21)
= 0. (A22)

All the terms in the last sum are known to be non-negative
except for γk−γj . Therefore, γk ≤ γj ⇒ γj > 0 ⇒ pj = 0.
We define index s as the largest index for which γs = 0, i.e.
γ1 = · · · = γs = 0, γs+1 > 0. Note that s > n, since
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otherwise the equality
∑

i pi = n cannot be satisfied. Also,
pj = 0 for j > s. Now we can rewrite Eq. (A18) as follows

β =
1∑
i qi

−
∑
i: i≤s

qiδi +
∑
i: i>s

qiγi

 (A23)

=
1∑
i qi

−
∑
i: i≤s

qiδi +
∑
i: i>s

qi (β − 2cqi)

 (A24)

=
1∑
i qi

−
∑
i: i≤s

qiδi − 2c
∑
i: i>s

q2i

+

β
∑

i: i>s

qi∑
i qi

.

(A25)

After moving the last term from RHS to LHS, we obtain

β
∑

i: i≤s

qi∑
i qi

=
1∑
i qi

−
∑
i: i≤s

qiδi − 2c
∑
i: i>s

q2i

 . (A26)

Note that LHS is obviously strictly positive, while RHS is
non-positive.

Since ∀i γi = 0, we rewrite Eq. (A18),

β = −
∑

i qiδi∑
i qi

. (A27)

If ∀i δi = 0, then it is also true that β = 0, leading to
∀i pi = cqi. This is the case when inclusion probabilities
are exactly proportional to the importance values. However,
this is possible if and only if the maximum value q1 is not
too large in comparison with other values, since otherwise
p1 > 1.
In this last case ∃k δk > 0 ⇒ pk = 1 ⇒ 2 (1− cqk) + β +
δk = 0 ⇒ β = 2 (cqk − 1)− δk. For any index j such that
j < k we have

2 (pj − cqj) + β + δj (A28)
= 2 (pj − cqj) + 2 (cqk − 1)− δk + δj (A29)
= 2pj + 2c (qk − qj) + (δj − δk)− 2 (A30)
= 0. (A31)

By regrouping the terms, we obtain

2pj + δj = 2c (qj − qk) + δk + 2 > 2, (A32)

and since pj ≤ 1, this means that δj > 0 ⇒ pj = 1.
Therefore, if for some index k it turns out that δk > 0, then
for all smaller indices j, δj > 0, and consequently pj = 1.
Again, let us define the index t as the least index with zero
δ coefficient, δt−1 > 0, δt = δt+1 = · · · = 0. Note that
t ≤ n+ 1, since more that n inclusion probabilities cannot
be equal to 1.

For i ≥ t, 2 (pi − cqi) + β = 0 ⇒ pi = cqi − β
2 .

Therefore,∑
i

pi =
∑
i: i<t

pi+
∑
i: i≥t

pi = t−1+
∑
i: i≥t

(
cqi −

β

2

)
= n.

(A33)
Similarly,

c
∑
i

q2i =
∑
i

piqi =
∑
i: i<t

qi+
∑
i: i≥t

qi

(
cqi −

β

2

)
(A34)

For any given t = 2, . . . , n two last equations allow us to
compute the values of c and β.

∑
i: i≥t

qi − (N − t+ 1)

∑
i: i<t

q2i
∑

i: i≥t

qi

 ·

 c

β
2

 =

n− t+ 1∑
i: i<t

qi

 ,

(A35)
where N is the total number of important values. The solu-
tion exists and is unique for each t since, obviously,

det


∑

i: i≥t

qi − (N − t+ 1)

∑
i: i<t

q2i
∑

i: i≥t

qi

 > 0.

In practice, we solve this matrix equation for each 2 ≤ t ≤ n,
test if the solution satisfies all the constraints, and after that
select the solution that delivers the minimum value of our
objective function. At least one proper solution always exists,
since for t = n+ 1 inclusion probabilities are equal to 1 for
n largest importance values and equal to 0 for all the rest
indices.
The solution of the system is differentiable w.r.t. all the qi,
leading to differentiable probabilities pi. However, as men-
tioned earlier, we use only pi computed with these equations
for i ≥ t, while for i < t we set pi = 1. Therefore, we
employ a straight-through estimator for these indices [1].
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