Adversarial Attention Perturbations for Large Object Detection Transformers

Supplementary Material

1. Reproducibility Statement

We make the following efforts to enhance the reproducibil-
ity of our results.

* For AFOG’s implementation a link to an anonymous
downloadable source repository is included in our ab-
stract. The source includes links for all datasets and
models used in our experiments.

* Our experiment details are given in Section 4, contain-
ing selected hyperparameters and hardware specifica-
tions.

* We also show example images under benign and
AFOG attack scenarios throughout the paper and ap-
pendix.

2. Additional Experimental Setup
2.1. Model Details

In our experiments to validate the effectiveness of AFOG at-
tacking vision transformer models for object detection, we
select twelve transformers of varying model sizes, ranging
from Detection Transformer (DETR) [4], a lightweight 40
million parameter model, to EVA [11] with more than one
billion parameters. We use the Detrex framework [30], built
on top of Detectron2 [35], and DINO [38] to standardize
our model implementations. Both DINO and Detrex adapt
numerous general-purpose transformer models to object de-
tection. Further, to demonstrate that AFOG also works be-
yond Detrex, we choose some transformer models such as
DETR and Swin from their original repositories associated
with the original papers instead of the versions provided in
Detrex. In this section of the Supplementary Material, we
first provide a brief overview of each of the twelve trans-
former models.

Detection Transformer (DETR)[4] adapts the transformer
architecture for object detection framed as a set predic-
tion task. It implements a transformer encoder-decoder
architecture and a global set loss with bipartite match-
ing. We explore DETR with ResNet-50 and ResNet-
101 backbones [12]. DETR is the foundation of many
other detection transformers [2, 39, 38], making it a com-
pelling target for AFOG. Original code adapted for our
implementation is available at https://github.com/
facebookresearch/detr

Deformable-DETR([39] improves upon DETR’s attention
mechanism by confining self-attention to a small re-
gion around a given point. This matches DETR’s per-

formance in significantly reduced training time and im-
proves performance on small object detection. We use
the version trained by Detrex with a ResNet-50 back-
bone. It is pretrained on ImageNet-1k and then trained
on COCO 2017. Attacking Deformable-DETR demon-
strates that AFOG is effective against its unique self-
attention mechanism. Original code adapted for our im-
plementation is available at https://github.com/
fundamentalvision/Deformable-DETR

DINO [38] advances DETR with improved denoising an-
chor boxes. DINO supports numerous backbones, making
it ideal for attacking many types of models with AFOG.
We choose to attack DINO to assess the viability of AFOG
against a variety of backbones and to investigate AFOG’s
performance under robust denoising. Original DINO code
adapted for our implementation is available at https:
//github.com/IDEA-Research/DINO

AlignDETR [2] addresses an alignment issue in DETR
that incorrectly matches correct predictions with the wrong
ground-truths during training. The authors remedy this
problem with an IoU-aware binary cross entropy (BCE)
loss, mixed-matching, and a sample weighting method that
reduces the effects of unimportant samples. We attack
AlignDETR to explore AFOG’s performance against this
alternative loss functon approach. Our implementation uses
a ResNet-50 backbone, and it is trained on COCO 2017.
Original code adapted for our implementation is avail-
able at https://github.com/IDEA-Research/
detrex/tree/main/projects/align_detr

ViTDet [15] adapts the original vision transformer (ViT)
to object detection. We use the version trained by De-
trex, which uses a plain ViT as the backbone for ViT-
Det with masked auto encoder and ImageNet-1k pretrain-
ing. ViTDet is further used as a backbone for DINO,
and the combination architecture is trained on COCO
2017. Like DINO and DETR, ViT is a widely pop-
ular model that has been adapted for numerous uses.
We choose ViTDet for our experiments to investigate
AFOG’s potential applicability to all ViT-based models.
Original code adapted for our implementation is avail-
able at https://github.com/IDEA-Research/
detrex/tree/main/projects/dino

ConvNeXt-Large-384 [22] ConvNeXt is a modernized
pure convolutional neural network that is designed to
compete with transformers on object detection and se-
mantic segmentation tasks. We use ConvNeXt-Large-
384 pretrained by Detrex on Imagenet-22k. Con-
vNeXt is used as a backbone with the DINO trans-



former, and both are trained on COCO 2017. At-
tacking ConvNeXt demonstrates that AFOG is effec-
tive against modern CNNs as well as transformers.
Original code adapted for our implementation is avail-
able at https://github.com/IDEA-Research/
detrex/tree/main/projects/dino

Swin-L [21] is a hierarchical transformer designed for com-
puter vision. Swin uses shifting windows to boost efficiency
and limit the computational cost of its self-attention mech-
anism. This efficiency also makes it viable at a range of
model sizes. We use Swin-Large-384-4-Scale from Detrex,
pretrained on ImageNet-22k and trained on COCO 2017.
We choose to attack Swin in our experiments to investi-
gate AFOG’s efficacy against its shifting window mech-
anism and because it is a popular backbone for a variety
of object detection models. Original code adapted for our
implementation is available at https://github.com/
IDEA-Research/DINO

InternImage-Large [32] is a CNN-based foundation
model that leverages deformable convolution instead of
sparse kernels. This reduces the inductive bias of tra-
ditional CNNs and enables Internlmage to learn larger-
scale patterns from larger datasets. We use InternIm-
age as a backbone for the DINO transformer. The pair-
ings are pretrained on Imagenet-22k and trained on COCO
2017. We choose Internlmage-Large for our experi-
ments to explore AFOG’s applicability to deformable con-
volution. A larger version of Internlmage is also cur-
rently one of the strongest models on the COCO ob-
ject detection leaderboard [©9]. We use Internlmage-Large,
a deeper model with more parameters than vanilla In-
ternlmage, because of its stronger benign performance.
Original code adapted for our implementation is avail-
able at https://github.com/IDEA-Research/
detrex/tree/main/projects/dino

FocalNet [37] replaces self-attention with a focal modu-
lation mechanism that describes interactions of vision to-
kens. This mechanism is comprised of three parts: hier-
archical contextualization, gated aggregation, and element-
wise modulation. Using FocalNet in our experiments
demonstrates AFOG’s viability against this focal mod-
ulation mechanism, which may have different weak-
nesses than the traditional self-attention inside a trans-
former. We adapt FocalNet-Large-4scale, pretrained on
ImageNet-22k for object detection with the DINO trans-
former. This combination is trained on COCO 2017.
Original code adapted for our implementation is avail-
able at https://github.com/IDEA-Research/
detrex/tree/main/projects/dino

EVA [11] is a large vision foundation model. It is based
on a classical ViT that is pre-trained on masked vision-
text features. It demonstrates strong performance in vari-

ous transfer learning tasks. We adapt EVA for object detec-
tion with DINO and Detrex. The Detrex version of EVA is
an EVA-01 model trained on COCO 2017 with additional
large-scale jittering (LSJ) augmentation. We select EVA for
our experiments to investigate AFOG’s performance against
a large foundation model with extensive pre-training.
Original code adapted for our implementation is avail-
able at https://github.com/IDEA-Research/
detrex/tree/main/projects/dino_eva

DETA [26] reintroduces IoU-based assignment and non-
maximum suppression (NMS) to the classic DETR archi-
tecture. The authors show that this is superior to the
bipartite matching used in the original DETR. Our ver-
sion of DETA is implemented via Detrex and uses a
Swin-Large-384 backbone. It is pretrained on ImageNet-
1k and trained on COCO 2017. We include DETA
with a Swin backbone in our experiments to inves-
tigate AFOG’s performance against IoU-based assign-
ment and NMS, and also to explore the Swin back-
bone with another architecture in addition to DINO.
Original code adapted for our implementation is avail-
able at https://github.com/IDEA-Research/
detrex/tree/main/projects/dino_eva

In addition to detection transformers, we also evaluate
AFOG attacking conventional CNN-based object detection
models, represented by Faster-R-CNN, SSD and YOLOv3.

Faster R-CNN (FRCNN) [29] is a two-phase CNN-based
object detector that uses a region proposal network to share
convolutional features with the detection network. It is
the standard victim object detector in many other attacks
[34, 8, 36, 16] making it an ideal standard of compari-
son. We use a version with a ResNet-50 backbone, trained
on Pascal VOC 2007. Original code adapted for our im-
plementation is available at https://github.com/
chenyuntc/simple-faster—-rcnn-pytorch

YOLOV3 [28] is a single-phase CNN-based object detec-
tor that predicts existence of objects, their bounding boxes
and their class labels in a single pass. YOLOV3 is a ver-
sion of YOLO family of algorithms with improved per-
formance, and we used the pre-trained YOLOV3 on Pas-
cal VOC 2007. YOLOV3 is another popular model among
other attacks, making it ideal for comparison. Original code
adapted for our implementation is available at https:
//github.com/gqwweee/keras—yolo3

SSD-300 [20] is also a single-phase CNN-based object
detector, which divides an image into default regions at
varying scales and aspect ratios and predicts object ex-
istence, bounding box and class label with confidence
scores for each bounding box. High-scoring boxes are
also adjusted to better fit predicted objects. We use a
pretrained SSD-300 on Pascal VOC 2007, which takes
300x300 inputs. Original code adapted for our im-



plementation is available at https://github.com/
pierluigiferrari/ssd_keras

2.2. Hyperparameter Tuning

We introduce an attention learning rate hyperparameter (see
Equation 6) that controls the sensitivity of AFOG’s adver-
sarial attention maps to gradient updates. Figure 8 shows
the performance of AFOG with varying attention learning
rates compared to AFOG without attention (attention learn-
ing rate zero) for three detection transformers. We observe
that an attention learning rate of 0.1 shows the strongest per-
formance across all three models, and so we use this value
for all models and all experiments.

® DETRR50 4 DINO

InternImage

40 T

20 +

0 /

Improvement Over Iterative (% Diff)

-20 t t t t {
0.001 0.005 0.01 0.05 0.1 0.5

Attention Learning Rate

Figure 8. AFOG improvement over iterative for varying values of
attention learning rate across three detection transformers.

3. AFOG Variants and Pseudocode

In addition to the pseudocode for AFOG provided in our
main paper, in this section, we also provide the pseudocode
for AFOG-V in Algorithm 2 and AFOG-F in Algorithm 3.

The key difference between AFOG and AFOG-V is the
replacement of O, with a set of zero predictions & instead
of forward propagating image O, < fp(x;¥). AFOG-
V also aims to minimize £4ro¢ according to its slightly
different formulation. Algorithm 2 provides a sketch of the
pseudo code.

AFOG-F changes AFOG by modifying benign predic-
tions Oy to change all confidence scores to 1.0. This means
every benign prediction by the model, regardless of quality,
is used as a ground truth during attack iteration. AFOG-F
aims to minimize £4ro¢, learning perturbations that in-
crease the likelihood of inducing these spurious low-quality
predictions. This is reflected in Algorithm 3.

4. Adversarial Attacks: Visualization

In this section, we provide additional visualization of
AFOG, AFOG-V, and AFOG-F attacks.

Algorithm 2 AFOG-V attack

Require: Victim image z € D, test-set D, Victim pre-
trained model fp(¢), Perturbation step size o p, Atten-
tion step size o4, Num. iters 7', Max pert. e.

1: Initialize O, + @

2: Initialize attention map Ag < 1;

3: Initialize perturbation Py <— Random(—e,¢€);

4: Initialize step variable k < 1;

5. while £k < T do

6: Attack image gy, < [[(2 + A © Py);

€
7: Forward propagate 44, through fp (¢, Zady);
8: Compute bbox-10ss Lopor (Tadws Ox; 9);
: Compute cls-loss Lejs(Zadp, Or;9);

10: Laroc(Tadv, Oz; ) = —bbox-loss — cls-loss;

11: Calculate losses with respect to Ap and Pj:
£A (madvv Ow; 19)’ EP(:Eadqn Om§ 19)’

12: Normalize attention loss £ 4 < Norm(L4);
13: Take sign of perturbation loss Lp < Sign(Lp);
14: Ak+1 (*Ak —aala;
15: Pk+1 «— P, —apLlp;

16: k< k+1;
17: end while
18: Tadvrps1 < 1[(x 4+ Aky1 © Prya);

€

19: return x .4,

Algorithm 3 AFOG-F attack

Require: Victim image x € D, test-set D, Victim pre-
trained model fp(¢}), Perturbation step size ap, Atten-
tion step size o 4, Num iters T', Max pert e.

: Initialize Of < fp(z;0)

. Initialize attention map Ay < 1;

. Initialize perturbation Py < Random(—¢, €);

Initialize step variable k < 1;

while k£ < T do

Attack image Toqo;, < [[(z + Ax © Pr);

T,€
7: Forward propagate x4, through fp (¢, Zady);
8: Compute bbox-10ss Lyppor (Tadvs O V);

. Compute cls-loss Lejs(Zadp, Ox;V);

10 Laroc(Tadv, Oz; %) = —bbox-loss — cls-loss;

11: Calculate losses with respect to Ap and Pj:
ﬁA (madva Owa 19)’ ACP(ajcuhn Ow7 19)’

12: Normalize attention loss £ 4 < Norm(L 4);

13: Take sign of perturbation loss Lp <« Sign(Lp);

14: Apq1 < Ay —aala; Pop1 < Py —aplp;

15: k+k+1;
16: end while
17: Zadog+1 < [[(@ 4+ Apy1 © Pryr);

,€

18: return x .,




DETR-R50

Benign
Internlmage
DETR-R50
AFOG
InternImage
DETR-R50 e
AFOG-V
InternImage
DETR-R50
AFOG-F
Internlmage

Figure 9. Example images for Benign, AFOG, AFOG-V, and AFOG-F scenarios with victims R50 (DINO) and InternImage (DINO).



4.1. AFOG versus AFOG-V and AFOG-F

Figure 9 shows the detection results of the victim trans-
former detector DETR-R50 under the benign scenario for
three examples from COCO testdev in Row 1. In Rows 2-4,
we show the AFOG attack, AFOG-V attack and AFOG-
F attack on these three example images. In Row 5 we
show the detection results of another detection transformer
model Internlmage (DINO) under the benign scenario for
the three example images. Rows 6-8 show the adverse ef-
fects of the AFOG attack, AFOG-V attack, and AFOG-F
attack on these three example images respectively. We ob-
serve that baseline AFOG demonstrates a mixture of gen-
erating false positives, obfuscating true positives, and dis-
rupting bounding boxes in benign cases for all three im-
ages across both models (Rows 1 and 5). AFOG-V disrupts
all detections across both models, with the exception of a
small ’person” detection in the top left corner of Row 7,
Column 1. AFOG-F induces a large quantity of spurious
detections, which show different behaviors between the two
models. For DETR (Row 4), the false positive detections
tend to spread out across each image. For ViTDet (Row 8)
the false positive detections tend to cluster in areas without
foreground objects. We observe AFOG-F also fails to dis-
rupt some true positive detections, such as the central person
in Row 4, Column 1. We conclude that generic AFOG dis-
plays the positive aspects of both variants: sufficient vanish-
ing to disrupt true positive detections paired with sufficient
fabrication to induce a small number of false positives.

4.2. Visualization of Adverse Effects of AFOG At-
tack on Different Detection Transformers

In Figures 10-13 we show visualizations of example ob-
ject detection results under the benign scenario and AFOG
attack for five COCO testdev images across all 12 trans-
formers in our experiments. We partition these results into
four groups to simplify comparison and highlight trends.
Each group shows benign predictions for a set of detectors
in the first rows, followed by AFOG-disrupted predictions
in the next rows.

Figure 10 compares detection results for FocalNet [37],
Internlmage [32], DINO-ResNet50 [12], and AlignDETR
[2]. We observe that, although these models each have
unique architectures, they have nearly identical benign pre-
diction behavior across five example images (Rows 1-4).
We further observe that AFOG’s learnable attention mecha-
nism probes and exploits the individual weaknesses of each
model, inducing unique disrupted behaviors in each (Rows
5-8). Although AFOG’s induced malicious behavior can
have similar themes, such as vanishing most detections in
the first image (Col. 1) or causing a large “Person” class
detection in the third image (Col. 3), the details of this be-
havior change between models. We speculate that this is a
result of AFOG’s architecture-agnostic adaptability.

Figure 11 compares detection results for DETR [4] with
a ResNet-50 backbone and DETR with a ResNet-101 back-
bone. Rows 1-2 show the benign behavior of the two mod-
els. We observe that nearly identical architectures produce
similar detections. However, AFOG causes spurious detec-
tions that differ between the two models (Rows 3-4). In im-
age two (Col. 2) AFOG induces a large “Couch” prediction
in both models by disrupting both class and bounding box
losses. Similarly, AFOG induces several small “Cat” detec-
tions in image three (Col. 3) for both models. In these cases,
AFOG has learned similar perturbations for similar archi-
tectures. Images 4 and 5 (Cols. 4-5) exhibit very different
behavior under AFOG attack, demonstrating how AFOG’s
learnable attention is also able to exploit fine-grained differ-
ences in victim models as necessary.

Figure 12 compares detection results for VitDet [15],
EVA [11], and DETA [26]. We compare AFOG failure
modes between these three models, and make two obser-
vations. (i) AFOG shows similar weaknesses against some
objects across the three models, such as the “Person” in im-
age five (Col. 5) and the “Baseball Bat” in image two (Col.
2). (ii) AFOG exhibits unique failure behavior for other ob-
jects, such as the “Couch” object in image four (Col. 4).
Against ViTDet (Row 4, Col. 4), AFOG fails to disrupt
the ”Couch” class label, attacking only the bounding box.
Against EVA (Row 5, Col. 4), AFOG fails to disrupt the
bounding box and changes “Couch” to a similar “Bed” la-
bel. We speculate that AFOG’s ability to probe for weak
points and adapt to different models may also lead to this
kind of unpredictable failure behavior.

Figure 13 compares detection results for the remaining
detectors from our experiments: Deformable-DETR [39],
ConvNeXt [22], and Swin-L [21]. As with other mod-
els, we observe very different detection behavior under
AFOG attacks between models. For example, we contrast
Deformable-DETR’s detections for image three (Row 4,
Col. 3) with ConvNeXt’s detections for the same image
(Row 5, Col. 3), noting that the two have little in common.
We also observe that AFOG largely fails to disrupt images
two and three against Swin (Row 6, Cols. 2-3), leaving mul-
tiple class and bounding box detections intact. We highlight
this image in red for emphasis.

4.3. Comparison to Other Attacks

We next compare our AFOG attack with four existing rep-
resentative victim-based detection attacks against FRCNN,
a two-stage CNN-based object detector.

Figure 14 provides three examples from the Pascal VOC
test set under the benign scenario (Column 1) and com-
pares our AFOG attack (Column 6) with four well-known
attacks: TOG [&] in Column 2, UEA [34] in Column 3,
RAP [16] in Column 4, and DAG [36] in Column 5. We
make two observations. (i) All five attacks are successful in



FocalNet SHUE

Internlmage &

Benign

R50

AlignDETR {53

FocalNet |

Internlmage [
Q

AFO

R50 £

AlignDETR {53

Figure 10. Comparison of Benign and AFOG-disrupted predictions on five example images with ResNet-50, Internlmage, FocalNet, and
Align-DETR. Despite nearly identical benign behaviors of all four models across five images, AFOG induces different malicious behavior
by effectively learning unique vulnerabilities, indicating strong AFOG adaptability.

attacking the example images for which FRCNN can return
correct detections under the benign scenario (Column 1).
(i) AFOG displays superior multi-box disruption, whereas
other attacks produce misclassification errors with correct
bounding boxes.

Figure 15 further compares AFOG, AFOG-V and
AFOG-F with TOG on three example images in the Pascal
VOC test set. For all three examples, TOG (Row 2) fails
to attack the FRCNN detector on the foreground objects
(dog, bus, cat) and in contrast, AFOG (Row 3) is success-
ful. AFOG-V (Row 4) shows the adverse effect of AFOG
vanishing, and AFOG-F (Row 5) shows the adverse effect
of AFOG fabrication.



DETR-R50

Benign

DETR-R101 50

DETR-R50 &

AFOG

DETR-R101§

Figure 11. Comparison of Benign and AFOG-disrupted predictions on five images with two similar architectures, DETR-R50 and DETR-
R101. Despite similar architectures, AFOG produces different malicious behavior by probing for unique vulnerabilities in each model.

ViTDet

EVA

AFOG

DETA

Figure 12. Comparison of Benign and AFOG-disrupted predictions on five images with ViTDet, EVA, and DETA. Although AFOG shows
strong attack performance against various other classes across the five images, it also struggles to disrupt the "Person” class in the third
and the fifth examples.



Deform.
DETR

ConvNeXt &

Benign

ConvNeXt |

AFOG

Swin-L §

Figure 13. Comparison of Benign and AFOG-disrupted predictions on five example images with Deformable-DETR, ConvNeXt, and
Swin-L. AFOG exhibits widely varying behavior for different models on the same image, such as against image three (Rows 4-6, Col. 3).

We also indicate two instances where AFOG failed to disrupt Swin-L’s performance, highlighted in red.



Figure 14. Comparison of three images across Benign, AFOG, TOG, UEA, RAP, and DAG cases. AFOG displays superior class and
bounding-box disruption. Figure adapted from [7]



Image ID: 000442

Image ID: 003715

o
e8]
—
]
]
=
s
)
=11]
51
5

Figure 15. Three example images from the VOC dataset where AFOG outperforms TOG.



