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Supplementary Material

A. Perspective Transformation
In this section, we formulate the perspective transforma-
tion [32] that we used in the detection network of MVTra-
jecter. As described in Sec. 3.4, the perspective transforma-
tion projects image feature maps of each view into a ground
plane. This perspective transformation is defined using 3D
locations (x, y, z) and 2D image pixel coordinates (u, v),
as:
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where γ is a real-valued scaling factor, and Pθ is the 3 × 4
transformation matrix calculated using the 3 × 3 intrinsic
camera parameter matrix A and the 3 × 4 extrinsic camera
parameter matrix [R|T ]. Specifically, R represents the ro-
tation, and T represents the translation. By setting z = 0,
we can retrieve the correspondence between the image pixel
(u, v) and the ground plane coordinates (x, y), as:
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where Pθ,0 is the 3 × 3 transformation matrix that is Pθ

with the third column canceled. This allows the projection
of image features onto the ground plane.

B. Datasets Details
In this section, we describe the datasets that we used in the
experiments in detail. The statistics of each dataset are sum-
marized in Table 9, and sample frames of each dataset are
provided in Fig. 4.

Wildtrack [9] This is a real-world multi-view dataset
consisting of one multi-view video sequence captured with
7 cameras. The multi-view video comprises 400 frames at a
frame rate of 2 fps and covers a total of 200 seconds. Each
view video is recorded at 1080 × 1920 resolution. A total
of 313 pedestrians are contained in the multi-view video,
and 20 pedestrians are contained in each frame on aver-
age. This dataset covers a 12 × 36m region quantized into

a 480× 1440 grid using square grid cells of 2.5 cm2. Each
grid cell is captured by 3.74 cameras on average. Wildtrack
splits them into the first 360 frames (180 seconds) for train-
ing and the remaining 40 frames (20 seconds) for testing.

MultiviewX [32] This is a synthetic dataset created using
the Unity engine and captures a more crowded scene than
Wildtrack. MultiviewX consists of one multi-view video
sequence captured with 6 cameras. The multi-view video
comprises 400 frames at a frame rate of 2 fps and cov-
ers a total of 200 seconds. Each view video is recorded
at 1080 × 1920 resolution. A total of 350 pedestrians are
contained in the multi-view video, and 40 pedestrians are
contained in each frame on average. This dataset covers a
16 × 25m region quantized into a 640 × 1000 grid using
square grid cells of 2.5 cm2, which is slightly smaller than
Wildtrack. Each grid cell is captured by 4.41 cameras on av-
erage. MultiviewX also splits them into the first 360 frames
(180 seconds) for training and the remaining 40 frames (20
seconds) for testing.

GMVD [65] This is a large-scale synthetic dataset that in-
cludes 7 scenes with varying numbers of cameras and cam-
era layouts. Of the 7 scenes, 6 scenes are captured using
Grand Theft Auto (GTA), and the remaining 1 scene us-
ing the Unity engine. In addition, each scene also contains
multiple multi-view video sequences with different envi-
ronmental conditions including time and weather. In to-
tal, GMVD comprises 53 multi-view video sequences and
5995 frames. Each multi-view video sequence is captured
at a frame rate of 2 fps, and each view video is recorded at
1080 × 1920 resolution. A total of 2800 pedestrians are
contained in GMVD, and each sequence contains 20–40
pedestrians in each frame on average. Each scene covers
a different size of the region and quantizes the region into
a grid using square grid cells of 2.5 cm2. Each grid cell of
each sequence is captured by 2.8–6.4 cameras on average.
Details of the statistics for each scene are provided in Ta-
ble 9. GMVD splits them into 6 scenes with 43 sequences
and 4983 frames for training and 1 scene (the bottom row
in Table 9) with 10 sequences and 1012 frames for testing.
To make testing difficult, this testing split also contains two
different camera layouts: one with 6 cameras and the other
with 8 cameras.



Dataset Scenes Sequences Frames Cameras Covered region Grid size Pedestrians
Wildtrack [9] Real 1 400 7 12× 36m 480× 1440 20 / frame

MultiviewX [32] Unity 1 400 6 16× 25m 640× 1000 40 / frame

GMVD [65]

Unity 2 723 6 16× 25m 640× 1000 40 / frame
GTA 10 1034 5 20× 30m 800× 1200 20 / frame
GTA 10 1000 3 30× 12m 1200× 480 30 / frame
GTA 10 1014 5 25× 25m 1000× 1000 30 / frame
GTA 1 182 5 28× 27m 1120× 1080 20 / frame
GTA 10 1030 7 33× 31m 1320× 1240 30 / frame
GTA 10 1012 6, 8 29× 19m 1160× 760 30 / frame

Table 9. Statistics of Wildtrack, MultiviewX, and GMVD. The scene in the bottom row of GMVD contains sequences of the same scene
captured by 6 or 8 cameras. In the experiments on GMVD, we utilized the scene in the bottom row for testing and the other scene for
training.

Method MODA↑ MODP↑ Recall↑ Precision↑
EarlyBird [62] 73.2 78.5 77.4 94.9
MVFlow [20] 72.4 78.2 77.7 93.5

TrackTacular [63] 68.0 79.3 72.9 93.7
MVTr [71] 72.7 78.9 79.0 92.6

Ours 74.4 79.2 79.4 94.0

Table 10. Comparison of detection results with previous end-to-
end MVPT methods on GMVD.

MODA↑ MODP↑ Recall↑ Precision↑
MVFP [2] 73.3 76.5 79.2 93.0

Ours w/ Ldet only 71.6 78.0 78.2 92.3
Ours w/ Lall 74.4 79.2 79.4 94.0

Table 11. Effect of Lall on detection performance and comparison
with the state-of-the-art MVPD method.

C. Implementation Details
During training, we applied random resizing and cropping
to multi-view image sequences as the data augmentation
following [31, 62]. We applied the same augmentation to
all multi-view images in one multi-view image sequence
within the window. We set the scale range of the resiz-
ing and cropping to [0.8, 1.2]. We also applied dropout at
the rate of 0.1 to the attention layer. For the Adam opti-
mizer [42], we set the optimizer momentum to β1 = 0.9
and β2 = 0.999. We did not use the weight decay. We set
the radius of the Gaussian kernel to 8 pixels when generat-
ing smoothed ground truth occupancy maps.

D. Analysis of Detection Results
In this section, we evaluated and analyzed the detection re-
sults of MVTrajecter. Unless otherwise stated, all experi-
ments were conducted on GMVD.

Evaluation Metrics. Following previous studies [32, 62,
65], we used four standard metrics provided by Chav-
darova et al. [9] and Kasturi et al. [37]: Multiple Object
Detection Accuracy (MODA), Multiple Object Detection
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Figure 3. MODA on the validation data of models trained with our
overall loss Lall and with the detection loss Ldet only.

Precision (MODP), recall, and precision. A detected pedes-
trian was classified as a true positive if its distance from the
ground truth was within 0.5 meters. We used MODA as
the primary performance indicator following previous stud-
ies [31, 32, 62, 63, 65].

Comparison of detection results. We compared the
detection results of MVTrajecter with EarlyBird [62],
MVFlow [20], TrackTacular [63], and MVTr [71], which
are state-of-the-art end-to-end MVPT methods and were
compared in Sec. 4.4 for their tracking performances. Ta-
ble 10 shows the comparison results. MVTrajecter achieved
the best MODA and recall and the second-best MODP and
precision. This indicates that MVTrajecter is superior to
the other methods in terms of detection. Compared to the
other methods, our overall loss Lall imposed large tempo-
ral constraints on MVTrajecter, which is presumably what
suppressed the overfitting in the detection and improved its
detection performance.

Effect of Lall on the detection. We investigated the ef-
fect of our overall loss Lall on the detection performance.
Table 11 shows a comparison of the detection performance
between MVFP [2], which is the state-of-the-art detection



W
il

d
tr

ac
k

(1
 s

ce
n

e)
M

u
lt

iv
ie

w
X

(1
 s

ce
n

e)
G

M
V

D
(7

 s
ce

n
es

)

⋯ ⋯

⋯ ⋯

⋯

⋮ ⋯

Training split Testing split

⋯

Figure 4. Sample frames of Wildtrack [9], MultiviewX [32], and GMVD [65]. Top to bottom rows represent Wildtrack, MultiviewX, and
GMVD, respectively. Left and right columns show the training split and testing split of each dataset, respectively. While GMVD contains
7 scenes, we visualize only 3 of them here.

IDF1↑ MOTA↑ MOTP↑ MT↑ ML↓
Two models 76.5 77.4 87.7 65.4 8.7

Two branches 77.2 78.1 87.7 66.0 8.7

Table 12. Effect of having two branches in one model.

α IDF1↑ MOTA↑ MOTP↑ MT↑ ML↓
0.97 73.9 73.3 90.4 61.8 0.0
0.98 74.8 75.8 90.3 61.8 0.0
0.99 74.6 75.8 90.1 61.8 0.0

Table 13. Impact of weighting parameter α on tracking perfor-
mances for the validation data.

method, and MVTrajecter trained with Lall and with Ldet

only. When MVTrajecter was trained only with Ldet, only
its detection network was optimized. Using Lall for train-
ing greatly improved the detection performance. In addi-
tion, surprisingly, MVTrajecter outperformed MVFP even
though MVTrajecter did not utilize the complex projections
and detection modules used in MVFP. Figure 3 shows the
MODA for the validation data at each epoch of the mod-
els trained with Lall and with Ldet only. While MODA
of the model trained only with Ldet decreased from epoch
12, MODA of the model trained with Lall continuously in-
creased. This indicates that Lall suppressed the overfitting
of the detection.

E. Additional Ablation Study
In this section, we conducted ablation studies to investigate
the effect of having two branches in one model, the impact
of weighting parameter α, the value ranges of CTMC and

IDF1↑ MOTA↑ MOTP↑ MT↑ ML↓
EMA 74.8 76.1 87.0 64.2 8.9
TAC 77.2 78.1 87.7 66.0 8.7

Table 14. Comparison between TAC and the exponential moving
average (EMA) appearance feature aggregation.

Pooling IDF1↑ MOTA↑ MOTP↑ MT↑ ML↓
Mean 76.3 77.5 87.6 65.2 8.8
Max 77.2 78.1 87.7 66.0 8.7

Table 15. Comparison between mean pooling and max pooling in
the detection network.

CTAC, the comparison of TAC with EMA aggregation, and
the pooling choice. Unless otherwise stated, all experiments
were conducted on GMVD.

Advantage of having two branches. MVTrajecter has
the motion and appearance branches in one model, as shown
in Fig. 2. To verify the effectiveness of having two branches
in one model, we compared it with the case of tracking
performed by two models (i.e., one has the motion branch
and the other has the appearance branch). According to
the comparison results in Table 12, having two branches
achieved a slightly better performance. This indicates the
advantage of simultaneously modeling both motion and ap-
pearance in an end-to-end manner.

Impact of weighting parameter α between TMC and
TAC. As described in Sec. 4.3, we tuned α on the vali-
dation data. Here, we show the impact of α on the tracking



Method IDF1↑ MOTA↑ MOTP↑
w/ PE in motion branch 76.9 78.0 87.9

w/ PE in appearance branch 76.7 77.9 87.6
w/o PE (Ours) 77.2 78.1 87.7

Table 16. Effect of positional embeddings. “PE” means positional
embeddings.

Method HOTA↑
EarlyBird [62] 64.5
MVFlow [20] 66.1

TrackTacular [63] 68.2
MVTr [71] 70.7

Ours 75.0
Table 17. Comparison with previous methods on the HOTA metric
when all models used their own detection results for tracking.

performances for the validation data in Table 13. Increasing
α improved MOTA while it worsened MOTP. We therefore
set α = 0.98 on the basis of these results.

Value ranges of CTMC and CTAC. We investigated the
value ranges of CTMC and CTAC during inference to verify
the validity of the extreme weighting of α. On GMVD test
split and for K = 7, the value range of CTMC was from 0.3
to 1.2 × 103, and the value range of CTAC was from −6.2
to −4.7 × 10−25. Because the value ranges of CTMC and
CTAC differed greatly, the weighted sum using α = 0.98
worked effectively.

Comparison between TAC and EMA appearance fea-
ture aggregation. We aggregated appearance features
over multiple past timestamps by calculating the probabil-
ities for each timestamp (Eq. 2) and summing the prob-
abilities for all timestamps (Eq. 3) in TAC. In contrast
to our approach, some monocular tracking methods ag-
gregate the appearance features by updating the latest ap-
pearance features using the exponential moving average
(EMA) [1, 17, 18, 67, 73]. We compared TAC with EMA
appearance feature aggregation, and the results shown in
Table 14 indicate that leveraging TAC outperformed lever-
aging EMA aggregation. Since EMA aggregation directly
fuses the appearance features of pedestrians recognized as
identical, we presume that it is more affected by association
errors than TAC.

Pooling choice. We performed max pooling to aggregate
projected features from multiple views, as described in
Sec. 3.4. Another option is to perform mean pooling instead
of max pooling. When we compared these two pooling op-
erations, as shown in Table 15, max pooling achieved a bet-
ter tracking performance. Max pooling extracts the most
relevant and informative features from different view per-

K FPS
Detection network 6.4

1 5.9
3 5.8
5 5.6
7 5.4

Table 18. Effect of past trajectory length K on inference speed.

Method FPS
EarlyBird [62] 6.0
MVFlow [20] 6.1

TrackTacular [63] 6.2
MVTr [71] 6.1

Ours 5.4

Table 19. Comparison of inference speed with previous methods.

spectives for the subsequent modules, which is presumably
what resulted in better tracking performance.

Effect of positional embedding. While we used temporal
embeddings (see Sec. 3.4), we did not use positional embed-
dings because the BEV features implicitly contain the posi-
tional information. To justify this, we implemented learn-
able positional embeddings in the motion and appearance
branches, as shown in Table 16. We did not observe the
improvement from our original implementation. Therefore,
positional embeddings are not crucial for the motion and
appearance branches.

Evaluation on HOTA metric. While we did not use
Higher Order Tracking Accuracy (HOTA) [43] because
comparison methods were not evaluated on it in their orig-
inal papers, it is one of the important evaluation metrics in
the field of monocular tracking. Therefore, we compared
the models in Table 1 using the HOTA metric. Table 17
shows the comparison results. Our method also signifi-
cantly outperformed previous methods on the HOTA met-
ric. This also demonstrates the effectiveness of our pro-
posed method.

F. Analysis of Inference Speed
Effect of past trajectory length K. Introducing more
past information inevitably causes a decrease in inference
speed. We measured the inference speed of the models
in Table 5 and the detection network of our method on an
Nvidia A100 GPU. The FPS of the models at K = 1, 3, 5, 7
and the detection network are shown in Table 18. Since the
detection network occupies most of the runtime, the effect
of increasing K on inference speed is very small.

Comparison with previous methods. We also measured
the inference speed of the models in Table 1. The



FPS of EarlyBird [62], MVFlow [20], TrackTacular [63],
MVTr [71], and ours are shown in Table 19. Our method is
slightly slower than the others because it uses more past in-
formation. However, this speed gap is very small compared
to the tracking performance improvement.

G. Qualitative Results
To visually verify the effectiveness of our MVTrajecter,

we visualized the detection and tracking results of MVTra-
jecter, TrackTacular [63], and the ground truth. Figures 5
and 6 show the comparison of the detection and tracking re-
sults on one multi-view video sequence (consisting of 100
timestamps) of GMVD, respectively. In Fig. 5, our MVTra-
jecter reduced the number of missed detections and false
positive detections, which are denoted by red and green
circles, respectively. This demonstrates that MVTrajecter
is superior to TrackTacular in the detection. In Fig. 6,
we can see that MVTrajecter correctly tracked pedestrians
that TrackTacular failed to track, as indicated by the red
squares. This demonstrates that MVTrajecter is also supe-
rior to TrackTacular in tracking. While MVTrajecter im-
proved the detection and tracking performance, it still strug-
gled to detect and track pedestrians near the boundaries of
the occupancy maps. Therefore, in order to improve perfor-
mance further, methods that can accurately handle pedestri-
ans near the boundaries are needed.

To validate the versatility of MVTrajecter, which is not
limited to GMVD, we also visualized tracking results on
Wildtrack and MultiviewX. Figures 7 and 8 show the com-
parison of tracking results on Wildtrack and MultiviewX,
respectively. In both figures, we can see that even in
cases where TrackTacular failed to track pedestrians, MV-
Trajecter correctly tracked them, as indicated by the red
squares. These results demonstrate that MVTrajecter is ef-
fective for various datasets.
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Figure 5. Qualitative comparison of detection results between ground truth (GT), TrackTacular [63], and the proposed MVTrajecter on
GMVD. Blue filled circles represent detected pedestrians, red circles represent missed detections, and green circles represent false positives.
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Figure 6. Qualitative comparison of tracking results between ground truth (GT), TrackTacular [63], and the proposed MVTrajecter on
GMVD. Each line represents a pedestrian track. Red squares indicate examples of different results between TrackTacular and our MVTra-
jecter.



GT

TrackTacular

Ours
Figure 7. Qualitative comparison of tracking results between ground truth (GT), TrackTacular [63], and the proposed MVTrajecter on
Wildtrack. Each line represents a pedestrian track. Red squares indicate examples of different results between TrackTacular and our
MVTrajecter.
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Figure 8. Qualitative comparison of tracking results between ground truth (GT), TrackTacular [63], and the proposed MVTrajecter on
MultiviewX. Each line represents a pedestrian track. Red squares indicate examples of different results between TrackTacular and our
MVTrajecter.


