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Abstract

In this supplementary material, we present the following
contents: (1) more detailed data curation pipelines. (2) ad-
ditional dataset statistics. (3) downstream dataset details.
(4) additional ablation studies, and (5) additional imple-
mentation details.

1. More Detailed Data Curation Pipelines

1.1. YouTube Video

The main curation pipeline for YouTube is illustrated in
Fig. 1 and Fig. 2 and detailed below.
Collecting Representative Channels and Videos. We
constructed a comprehensive list of over 355 dermatology-
related terms by consulting relevant literature and publicly
available datasets. These terms encompass skin disease-
related concepts, common names for various skin condi-
tions, and associated synonyms. For each keyword, we
retrieved the top 200 recommended videos from search
queries. Additionally, based on our empirical observation
that channel-based searches yield more focused and higher-
quality explanatory videos compared to keyword searches,
we manually curated 50 YouTube channels dedicated to der-
matology explanations and downloaded their videos. Dur-
ing the downloading process, we prioritized the highest-
resolution version of each video while filtering out videos
shorter than 30 seconds or with a resolution below 224p. In
total, we collected approximately 51k videos.
Filtering for Narrative-Style Videos. We assessed each
video to determine: (1) whether it contains a sufficient
number of usable dermatological images, and (2) whether
it qualifies as a narrated video with rich explanatory
voiceovers.

*Equal contribution

Figure 1. Curation pipeline for YouTube content. Our process
begins with searching and collecting 51k videos from educational
channels, followed by filtering to identify narrative-style content
with high-quality explanations. We then extract and denoise text
using a combination of speech-to-text models, handcrafted algo-
rithms, and LLMs. Finally, we align the processed text with cor-
responding image pairs to create a curated dataset.

For criterion (1), we employed keyframe extraction with
a predefined threshold to ensure a minimum level of visual
change required for keyframe selection. For newly acquired
videos, we extracted keyframes using FFmpeg by comput-
ing inter-frame color histogram differences. The threshold
was determined via linear interpolation between 0.008 for
5-minute videos and 0.25 for 200-minute videos. We then
trained and applied a DenseNet121 image classifier to iden-
tify keyframes containing dermatological images. Videos
where more than 50% of keyframes were classified as con-
taining dermatological content were labeled as valid.

For criterion (2), we utilized inaSpeechSegmenter to es-
timate the proportion of human speech within each video,
setting a threshold of 0.2. Videos falling below this thresh-
old were marked as silent or lacking sufficient explanatory
narration.
Text Extraction and Denoising. To address the challenges
of automatic speech recognition (ASR) for medical termi-
nology in YouTube subtitles [2], we employed the large-



Figure 2. Flow chart of the curation pipeline for YouTube content.

Figure 3. Curation Pipeline for PubMed Source. The process
involves: (a) Searching and downloading articles from PubMed
Open Access using pre-defined dermatology terms; (b) Extracting,
splitting, and cleaning image captions; (c) Splitting subfigures us-
ing object detection and classifying skin images; and (d) Aligning
image-text pairs to create the final dataset.

scale open-source Whisper Large-V3 model [6] to perform
speech-to-text conversion by directly transcribing entire au-
dio segments. We then developed a transcription denoising
and quality control pipeline consisting of three key steps:

(i) Applying the RAKE algorithm to identify key phrases
(up to four words) and optimizing them by removing stop
words using NLTK;

(ii) Utilizing GPT-4o to verify and correct each entry,
correcting transcription errors, and refining the alignment
of complete descriptive statements;

(iii) Prompting a language model to generate a structured
summary of the subtitles for improved readability and orga-
nization.
Aligning Image and Text Pairs. To achieve precise align-

ment between images and their corresponding text, we de-
fined the timestamp interval between consecutive keyframes
as an image chunk and treated each transcribed sentence as
a text chunk. When the temporal overlap between an image
chunk and a text chunk exceeded 50%, we considered them
a matched pair. Note that one image chunk may map to
multiple text chunks, in which case we concatenated these
text chunks into a single longer description.

For image chunks without any matching text chunks (i.e.,
those with zero temporal overlaps), we observed they typ-
ically depicted content similar to previous frames that al-
ready had mapped text (e.g., continuous discussion of the
same type of lesion). Consequently, we aligned such un-
matched chunks to the most recent preceding keyframe with
an associated text description. To mitigate potential mis-
matches in fine-grained details, we additionally filtered out
image-specific details from the textual content, preserving
only high-level descriptive information.

1.2. PubMed
Following [3, 4], the main curation pipeline for PubMed OA
is illustrated in Fig. 3 and detailed below.
Collecting Image-text Pairs. We retrieved dermatology-
related articles published between 1990 and 2024 from the
PMC Open Access Subset using 356 domain-specific terms.
This query yielded 566,571 articles with approximately 3.6
million images. To filter out non-dermatology-related fig-
ures (e.g., diagrams, flow charts, cartoon illustrations, and
X-rays), we implemented a combination of clustering and
manual inspection. After filtering, we matched the selected
images with their captions from the provided XML format



files to construct approximately 50K dermatology-focused
image-text pairs.
Filtering Process. We used EfficientNetV2-S for feature
extraction and applied PCA to reduce feature dimensions
to 50. Using these features, we performed hierarchical K-
means clustering, first grouping images into 20 major clus-
ters, each further divided into 20 subclusters. We manu-
ally inspected 50 representative images per subcluster, iter-
atively removing non-dermatology clusters over five rounds
until only dermatology-related clusters remained.

1.3. Educational Material
Collecting Image-text Pairs from Educational Material.
We curated image-text pairs from 68 materials using the
Fitz optical scanning module from the PyMuPDF Python
package. For each detected image, the nearest caption
box containing figure-related patterns was automatically re-
trieved to form an image-text pair. When direct extrac-
tion from scanned PDFs was not feasible, Optical Character
Recognition (OCR) converted them into a vectorized format
before extraction.
Removing Non-Dermatology Images. To remove non-
dermatology images from curated image-text pairs, we
partitioned the curated image-text pairs into 20,000 im-
age chunks for computational efficiency. EfficientNetV2-S
served as a feature extractor, encoding image features that
were subsequently reduced to a 50-dimensional space using
Principal Component Analysis (PCA). Manual inspection
and iterative non-dermatology cluster removal were per-
formed three times to ensure the elimination of the most
irrelevant images.
Subfigure Detection and Segmentation. For subfigure
detection, we trained a DINO [12] object detector using
the MMDetection framework on 1,072 training images and
213 validation images sampled for each data source. The
trained model then detected all subfigures, systematically
cropping and arranging them in a structured left-to-right,
top-to-bottom order.
Subcaption Detection and Image-text Pairing. Subcap-
tions were extracted using regular expressions that identi-
fied common subfigure markers (e.g., A) and (a)), facilitat-
ing automated detection and segmentation. Each subfigure
was matched sequentially with its corresponding subcap-
tion. If discrepancies arose between the number of sub-
figures and subcaptions, the original images and captions
remained intact to preserve data integrity.
Automated Filtering of Non-Dermatology Subfigures.
To further remove non-dermatology subfigures, we trained
a DenseNet-121 classifier on a manually annotated dataset
of 2,200 images sourced from educational materials (2,000
dermatology, 200 non-dermatology). Using a weighted ran-
dom sampler and the Adam optimizer, we trained with a
batch size of 128 and a learning rate of 9e-3. Early stopping

was applied, halting training if validation AUROC showed
no improvement after 22 epochs. By applying this classi-
fier, we effectively excluded non-dermatology images from
our dataset, ultimately ensuring a high-quality collection of
image-text pairs sourced from educational materials.

1.4. Medical Forums
Extracting Image-Text Pairs from Twitter Posts. We
began by manually reviewing content associated with 58
dermatology-related keywords to identify highly relevant
channels. Through this process, we curated 27 dermatol-
ogy channels comprising 14,099 posts, including both the
tweet content and the three most-liked replies under each
tweet. To ensure the dataset contained high-quality derma-
tology images, we applied the classifier mentioned in the
educational materials-curated pipeline, refining the dataset
to 6,726 images.
Text Cleaning and Processing. The accompanying text un-
derwent extensive cleaning, removing @usernames, hash-
tags (‘#’), newline (‘\n’) and carriage return (‘\r’) sym-
bols, HTML links, URLs, bold and italicized text, and other
invalid characters. Additionally, all sentences containing
question marks or beginning with “What is” were elimi-
nated to enhance textual clarity.
Manual Removal of Advertisements. Further refine-
ment was carried out through manual inspection, leading to
the removal of advertisement-related tweets, reducing the
dataset to 6,532 image-text pairs.
Text Standardization. To standardize the text, we recon-
structed it by concatenating the original tweet content with
its longest reply. Finally, image-text pairs containing fewer
than three words were discarded, resulting in a final dataset
of 6,431 high-quality image-text pairs. For other medical
forums such as IIYI and Reddit, we followed similar work-
flows.

1.5. Public Dataset
Additionally, we created handcrafted image-text pairs using
the publicly available SCIN [9] and MSKCC [1] datasets.
For the MSKCC dataset, we generated text descriptions by
integrating anatomic site, lesion type, and diagnosis results
into a structured template, yielding 10,619 image-text pairs.
Similarly, for the SCIN dataset, we constructed text de-
scriptions by incorporating image modality, skin tone, age,
gender, skin texture, symptoms, and diagnosis into a hand-
crafted template, resulting in 6,518 image-text pairs.

1.6. Initial Text Processing and Quality Control
General Processing. As shown in Fig. 4, we processed
non-forum text through language detection, information
block filtering, and abbreviation expansion. Non-English
text was identified using SpaCy and translated into English
using GPT. For data sourced from PubMed and educational



Figure 4. Workflow for general text processing.

Figure 5. Workflow for forum-specific text processing.

materials, we instructed GPT to filter out non-medical in-
formation blocks, such as citations, figure references, hy-
perlinks, copyright statements, and personal names. For
knowledge-dense texts, GPT recognized and expanded ab-
breviations contextually (e.g., HIV → Human Immunodefi-
ciency Virus (HIV)).

Forum-Specific Processing. As illustrated in Fig. 5, for
multi-turn discussions in medical forums, we extracted
structured summaries, including: (1) the poster’s chief
complaint (demographics, symptoms, diagnosis, and med-
ical intent) and (2) clinical findings and impressions from
replies (symptom elaborations, differential diagnostic dis-
cussions, and treatment suggestions). These components

were concatenated to form the final captions. If summa-
rization failed, we instead extracted symptom and disease
entities, connecting them with semicolons.

Quality Control. We applied rule-based filtering specific
to data sources, including but not limited to discarding cap-
tions with fewer than three words or ten characters, as well
as those consisting solely of garbled text. For noisy sources,
we instructed GPT to evaluate dermatological relevance us-
ing a QA-based approach. OCR-derived text underwent
spell-checking, punctuation correction, and coherence re-
finement. This ensured captions were precise, standardized,
and dermatology-focused.



Figure 6. Example of ontology tree construction. A pipeline for developing a comprehensive ontology tree from a standard expert-
constructed ontology tree. The LLM is provided with the standard ontology tree pre-defined by medical experts, the ontology prompt,
and the standardized disease list, ensuring the original ontology structure is maintained while accurately inserting diseases into the correct
hierarchical positions.

Figure 7. Frequency distribution of body sites.

1.7. Ontology Knowledge Augmentation
1.7.1. Standardized Disease and Clinical Concept
For all data sources, the LLM-extracted content was often
noisy and unformatted. We standardized diseases and con-

Figure 8. Frequency distribution of symptoms.

cepts to avoid medical term ambiguity issues.

Construction of the Standardized Disease List. We con-
structed a standardized disease list by compiling disease
labels from the F17k, SD128, SNU134, SCIN, and HAM



Figure 9. Word cloud of medical terms: medical term (left), diseases (middle), and clinical concept (right).

datasets. Additionally, we leveraged LLM to automati-
cally identify and merge diseases with identical content but
different names, ensuring consistency and reducing redun-
dancy. This process resulted in a standardized disease list
containing 407 unique disease labels.
Construction of Clinical Concept List. We established a
standardized concept list by compiling labels from public
skin condition datasets, including Derm7pt and SkinCon.
To further expand this list, we prompted the LLM to gen-
erate additional skin-related visual concepts based on key
dermatological categories: Basic Morphology, Secondary
Changes, Basic Colors, Color Characteristics, Shape Char-
acteristics, Surface Features, Distribution Patterns, Border
Characteristics, and Special Morphology. We conducted
this process multiple times and manually removed any un-
related concepts. This resulted in a standardized clinical
concept list containing 130 unique clinical concept labels
as shown in Table 5.
Alignment between LLM-extracted contents and stan-
dardized lists. To align LLM-extracted content with stan-
dardized lists, we implemented two distinct pipelines for
disease and clinical concepts:

1) Standardized Disease List Alignment: We con-
structed a mapping framework using a Word2Vec-based
approach, employing BioMedBERT as a word encoder to
transform LLM-generated disease names and the standard-
ized disease list into vector representations. To ensure accu-
rate mappings, we iterated through the LLM-extracted con-
tent list, computing similarity scores against the standard-
ized disease list. If the highest similarity score exceeded
0.7, the LLM-generated disease name was mapped to its
corresponding standardized term. This process successfully
aligned LLM-generated content with 390 unique standard-
ized diseases as shown in Table 5, bridging the connection
between downstream classification datasets and pretrained
image-text pairs.

2) Standardized Clinical Concept List Alignment: We
used two methods to match LLM-extracted concepts with
the standardized concept list. First, the Substring Match-
ing Algorithm identified overlapping terms, successfully
aligning most LLM-extracted concepts with standardized
clinical concepts (e.g., “erythematous-violaceous macule”
mapped to “erythematous,” “violaceous,” and “macule”).

Second, for the remaining unmatched concepts, we em-
ployed LLM-assisted alignment, providing the LLM with
both lists to iteratively refine matches through multi-turn
dialogues. This process enabled the alignment of LLM-
extracted concepts with 130 standardized clinical concepts.

1.7.2. Ontology Construction and Augmentation
To construct a dermatology ontology tree, we built upon an
initial standard ontology tree (Fig.1e) curated by four der-
matology experts, encompassing 128 dermatological dis-
eases from the SD128[7] dataset. We then utilized a spe-
cialized ontology prompt strategy that enabled the LLM to
systematically integrate diseases from the standardized dis-
ease list into the ontology structure while maintaining hier-
archical integrity.
The ontology construction follows four key principles:
1) Preservation of the standard ontology structure – The
LLM must retain the original hierarchy and avoid modi-
fying the positions of existing nodes. 2) Accurate disease
insertion – Each disease from the standardized disease list
must be correctly placed, considering its hierarchical rela-
tionship with existing nodes in the ontology tree. 3) Jus-
tification for new insertions – If a disease is inserted into
the ontology tree, the LLM must provide a rationale for
its placement to ensure interpretability and traceability. 4)
Handling uncertain classifications – If the LLM is unsure
of a disease’s placement, it defers the decision by adding it
to a separate list with an accompanying explanation.
LLM-driven Ontology Integration. As shown in Fig. 6,
we provided the LLM with three key inputs: the standard
ontology tree, the ontology prompt, and the standardized
disease list. The LLM then automatically integrated dis-
eases from the standardized disease list into the ontology
tree, generating a refined structure that captured rich and di-
verse hierarchical relationships. For instance, Miliaria was
correctly inserted as a child node under Physical and Ex-
ogenous conditions. To ensure stability and consistency, we
repeated this automatic LLM-driven integration for five it-
erations, refining the ontology tree through iterative manual
adjustments and validation. As a result, we successfully
constructed an ontology tree comprising 371 skin disease
conditions, while 19 general diseases remained unplaced
due to the LLM’s uncertainty regarding their classification.
This structured methodology ensured that ontology tree de-



velopment remained systematic, transparent, and aligned
with expert-defined standards, while effectively leveraging
the LLM’s capabilities for hierarchical reasoning and dis-
ease classification.
Ontology Caption Construction. Once the standardized
disease list was integrated, we used the augmented ontol-
ogy tree to retrieve all parent nodes of each disease, gen-
erating hierarchical disease paths (e.g., folliculitis: inflam-
matory −→ infectious −→ bacterial −→ folliculitis). We then
transformed the hierarchy into ontology-augmented cap-
tions using a series of predefined templates, such as ‘This
is a skin photo diagnosed as {inflammatory, infectious, bac-
terial, folliculitis}.’ This approach ensured that ontology
captions accurately represented hierarchical relationships
within the ontology tree, providing a structured and stan-
dardized description of dermatological conditions.
Knowledge Augmentation Caption Construction. Fi-
nally, the knowledge-augmented caption was constructed
by appending the ontology caption and clinical concept cap-
tion to the end of the original caption. Similar to ontol-
ogy caption construction, the clinical concept captions were
generated using a handcrafted template: “This is a skin
photo showing {concept a, concept b, concept c}.”

2. Additional Dataset Statistics
Fig. 7 and 8 illustrate the frequency distribution of anatomi-
cal locations and symptoms in Derm1M. The analysis re-
veals that skin conditions predominantly manifest on the
face, nose, and ears, while common symptoms include
bleeding and tenderness. These distributions offer valuable
insights into prevalence patterns within the dataset. Addi-
tionally, Fig. 9 displays word clouds highlighting frequent
terms across three categories: medical terminology, der-
matological conditions, and clinical concepts. Fig. ??–??
showcase representative image-text pairs from the Derm1M
dataset. Table 5 and 6 show the complete list of the 390 skin
conditions and 130 clinical concepts covered in Derm1M.

3. Downstream Dataset Details
Daffodil: This dataset is distinguished by its comprehen-
sive collection of 9,548 dermatoscopic images across five
skin conditions (acne, vitiligo, hyperpigmentation, nail pso-
riasis, and SJS-TEN), offering a valuable resource for non-
melanoma skin disease classification that complements ex-
isting skin cancer-focused datasets like ISIC2019 [1] and
HAM10000 [8].

4. Additional Ablation Studies
We explore the performance differences between training
methods on the Derm1M dataset, comparing SigLIP [11],
CoCa [10], and CLIP [5]. Tables 1–3 present down-
stream performance across various tasks. CLIP consistently

outperforms on zero-shot disease classification and few-
shot/full-shot linear evaluation, achieving the highest accu-
racy in most settings. However, SigLIP and CoCa demon-
strate superior performance on cross-modal retrieval tasks.

5. Additional Implementation Details
Training Details. We pretrain a series of models called
DermLIP on the Derm1M dataset following CLIP [5]’s con-
trastive learning objective. Each model is trained for 30
epochs on a single NVIDIA H200 GPU. We swap hyper-
parameters including batch size and learning rate, selecting
the best-performing models based on validation loss.
Prompt Details for Zero-shot Classification We adhere to
the zero-shot classification method of the OpenCLIP frame-
work, utilizing a prompt ensemble strategy for evaluation.
The specific prompt templates employed in this process are
detailed in Table 7.
Hyper-parameter tables for main models We present the
pre-training hyper-parameters for the DermLIP models in
Table 8. The table includes all critical training hyper-
parameters, while the remaining parameters adhere to the
default settings of the OpenCLIP framework.



Training methods Pretrained Data Vision Enc. Text Enc. HAM F17K PAD Daffodil Average
#class 7 113 6 5
SigLIP Derm1M ViT-B16 SigLIP 0.6068 0.2249 0.5857 0.7058 0.5308
CoCa Derm1M ViT-B32 GPT77 0.4098 0.1700 0.5466 0.7262 0.4632
CLIP Derm1M ViT-B16 GPT77 0.6820 0.2278 0.6074 0.7257 0.5607

Table 1. Ablation on different training methods for zero-shot disease classification (Acc).

Labeling
Ratio Methods Vision Enc. Text Enc. HAM F17K PAD Daffodil Average

#class 7 113 6 5

1%

SigLIP ViT-B16 SigLIP 0.6986 0.1394 0.5098 0.7476 0.5239
CoCa ViT-B32 GPT77 0.7212 0.1349 0.5076 0.7974 0.5403
CLIP ViT-B16 GPT77 0.7458 0.1602 0.5184 0.8545 0.5697

10%

SigLIP ViT-B16 SigLIP 0.8037 0.2980 0.6312 0.8759 0.6522
CoCa ViT-B32 GPT77 0.7532 0.2967 0.6551 0.8681 0.6433
CLIP ViT-B16 GPT77 0.8110 0.3555 0.6594 0.9372 0.6908

100%

SigLIP ViT-B16 SigLIP 0.8550 0.4433 0.6703 0.9330 0.7254
CoCa ViT-B32 GPT77 0.7591 0.4933 0.7115 0.8743 0.7096
CLIP ViT-B16 GPT77 0.8523 0.5102 0.7614 0.9644 0.7720

Table 2. Ablation on different training methods for linear evaluation (Acc).

Training methods Vision Enc. Text Enc.
Holdout (n=9806) SkinCAP (n=3989)

I2T (%) T2I (%) I2T (%) T2I (%)
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

SigLIP ViT-b16 SigLIP 0.3763 0.5614 0.3818 0.5716 0.1860 0.3896 0.1908 0.4141
CoCa ViT-B32 GPT77 0.4150 0.6102 0.4182 0.6116 0.1564 0.3643 0.1737 0.3818
CLIP ViT-b16 GPT77 0.4069 0.6021 0.3966 0.5992 0.1567 0.3632 0.1594 0.3567

Table 3. Ablation on different training methods for cross-modal retrieval results. I2T represents image-to-text retrieval and T2I represents
text-to-image retrieval.

Method

Encoder AUROC

Vision Text
SkinCon Derm7pt

Average(32) (7)
CLIP-B16 [5] ViT-B16 GPT77 0.6643 0.5594 0.6119
SigLIP [11] ViT-B16 SigLIP 0.6769 0.5631 0.6200
CoCa [10] ViT-B32 GPT77 0.6041 0.5677 0.5859
PMC-CLIP [4] ResNet50 GPT77 0.6251 0.5820 0.6036
BiomedCLIP [13] ViT-B16 PMB256 0.6817 0.6092 0.6455
MONET [3] ViT-L14 GPT77 0.7502 0.6889 0.7196
DermLIP ViT-B16 GPT77 0.7728 0.6877 0.7303
DermLIP PanDerm-B PMB256 0.7299 0.6148 0.6724

Table 4. Zero-shot concept annotation (AUROC).



A-E F-M N-R S-Z
abscess fissure necrosis salmon
acuminate fissured nodule satellite
angulated flat orange scale
annular flat topped oval scaly
arciform arrangement follicular-centered papule scar
arcuate friable papulonodule scattered
asymmetric generalized papulopustule sclerosis
atrophy geometric papulovesicle serpiginous
black gray patch sharp
blue grouped pedunculated smooth
blue whitish veil hemorrhage perifollicular stellate
blurred herpetiform pigment network streaks
brown(hyperpigmentation) hyperkeratotic pigmentation symmetric
bulla induration pink targetoid
burrow irregular plaque telangiectasia
circumscribed keloid poikiloderma translucent
clustered keratotic polygonal tumor
comedo leaf-shaped poorly defined ulcer
confluent lichenification psoriasiform ulcerated
crust lichenoid purple umbilicated
crusted linear purpura/petechiae vascular structures
cyst linear arrangement pustule vegetating
dermatomal localized raised verrucous
desquamation macule red vesicle
diffuse maculopapule regression structures violaceous
discrete maculopatch regular warty/papillomatous
disseminated melanotic reticular wedge-shaped
dome-shaped molluscoid reticulated pattern well-defined
dots and globules rough wheal
dyschromic round white(hypopigmentation)
ecchymotic xanthomatous
eczematous xerosis
eroded yellow
erosion zosteriform
erythema
excoriation
exophytic/fungating
exudate

Table 5. Full List of 130 standardized clinical concepts.



A-E F-M
abscess factitial dermatitis
acanthosis nigricans favre racouchot
acne fibroma molle
acne keloidalis nuchae fixed drug eruption
acne urticata fixed eruptions
acne vulgaris flat wart
acquired autoimmune bullous diseaseherpes gestationis flushing
acrokeratosis verruciformis follicular mucinosis
actinic granuloma folliculitis
actinic solar damage(actinic keratosis) foot ulcer
actinic solar damage(cutis rhomboidalis nuchae) foreign body reaction of the skin
actinic solar damage(pigmentation) fox-fordyce disease
actinic solar damage(solar elastosis) freckle
actinic solar damage(solar purpura) fungal dermatitis
actinic solar damage(telangiectasia) fungal dermatosis
acute and chronic dermatitis furuncle
acute constitutional eczema geographic tongue
acute dermatitis granulation tissue
acute dermatitis, nos granuloma annulare
acute generalized exanthematous pustulosis granuloma faciale
acute vesicular dermatitis grover’s disease
adnexal neoplasm guttate psoriasis
ageing skin hailey hailey disease
allergic contact dermatitis halo nevus
allergic reaction hand eczema
alopecia hand foot and mouth disease
alopecia areata hemangioma
alopecia mucinosa hematoma of skin
amyloidosis hemosiderin pigmentation of lower limb due to varicose veins of lower limb
angiofibroma hemosiderin pigmentation of skin due to venous insufficiency
angiokeratoma herpes simplex virus
angioma herpes zoster
angular cheilitis hidradenitis suppurativa
animal bite - wound histiocytosis of skin
annular erythema hormonal acne
apocrine hydrocystoma hyperkeratosis palmaris et plantaris
arsenical keratosis hyperpigmentation
atopic dermatitis hypersensitivity
atopic winter feet hypertrichosis
autoimmune dermatitis hypertrophic scar
basal cell carcinoma ichthyosis
beau’s lines idiopathic guttate hypomelanosis
becker nevus impetigo
behcets disease infantile atopic dermatitis
benign keratosis infected eczema
blister inflammatory dermatosis
blue nevus insect bite
bowen’s disease intertrigo
bullous disease inverse psoriasis
bullous pemphigoid irritant contact dermatitis
burn of forearm irritated seborrheic keratosis (from ”sk/isk”)
burn of skin junction nevus
café au lait macule juvenile plantar dermatosis
calcinosis cutis juvenile xanthogranuloma
callus kaposi sarcoma
campbell de morgan spots kaposi’s sarcoma of skin
candida intertrigo keloid
candidiasis keratoacanthoma
cellulitis keratoderma
central centrifugal cicatricial alopecia keratolysis exfoliativa of wende
cheilitis keratosis
chilblain keratosis pilaris
childhood bullous pemphigoid keratosis pilaris rubra faciei
cholestasis of pregnancy kerion
chondrodermatitis nodularis helicis knuckle pads



chronic actinic dermatitis koilonychia
chronic dermatitis, nos langerhans cell histiocytosis
clubbing of fingers leg veins
compound nevus lentigo
condyloma lentigo maligna
condyloma acuminatum lentigo maligna melanoma
confluent and reticulated papillomatosis leukocytoclastic vasculitis
congenital nevus leukonychia
contact dermatitis lichen amyloidosis
contact dermatitis caused by rhus diversiloba lichen nitidus
contact dermatitis, nos lichen planus
contact purpura lichen sclerosis et atrophicus
crowe’s sign lichen simplex chronicus
cutaneous b-cell lymphoma lichen spinulosus
cutaneous horn lichen striatus
cutaneous larva migrans lipoma
cutaneous leishmaniasis livedo reticularis
cutaneous lupus local infection of wound
cutaneous sarcoidosis localized cutaneous vasculitis
cutaneous t cell lymphoma localized skin infection
cyst lupus erythematosus
darier-white disease lyme disease
dariers disease lymphangioma
deep fungal infection lymphocytic infiltrate of jessner
degos disease majocchi granuloma
dermatitis median nail dystrophy
dermatitis herpetiformis medication-induced cutaneous pigmentation
dermatofibroma melanin pigmentation due to exogenous substance
dermatosis papulosa nigra melanocytic nevus
desquamation melanoma
diffuse xanthoma melasma
digital fibroma merkel cell carcinoma
dilated pore of winer metastatic carcinoma
discoid eczema milia
disseminated actinic porokeratosis miliaria
drug eruption moles
drug eruptions & reactions molluscum contagiosum
drug-induced pigmentary changes morphea
dry skin mucinosis
dyshidrosiform eczema mucocele
dysplastic nevus mucosal melanotic macule
ecthyma muzzle rash
ecthyma gangrenosum mycosis fungoides
eczema myxoid cyst
eczema herpeticum
ehlers danlos syndrome
elephantiasis nostras
epidermal nevus
epidermoid cyst
epidermolysis bullosa
erosion of skin
erosive pustular dermatosis of the scalp
eruptive odontogenic cyst
eruptive xanthoma
erythema ab igne
erythema annulare centrifugum
erythema craquele
erythema dyschromicum perstans
erythema elevatum diutinum
erythema gyratum repens
erythema migrans
erythema multiforme
erythema nodosum
exfoliative dermatitis
exfoliative erythroderma
N-R S-Z
naevus comedonicus sand-worm eruption



nail disease sarcoidosis
nail dystrophy scabies
nail psoriasis scalp psoriasis
necrobiosis lipoidica scar
nematode infection scleroderma
neurodermatitis scleromyxedema
neurofibroma sebaceous hyperplasia
neurofibromatosis seborrheic keratoses
neutrophilic dermatoses sixth disease
nevus skin and soft tissue atypical mycobacterial infection
nevus depigmentosus skin cancer
nevus sebaceous of jadassohn skin diseases caused by warts
nevus spilus skin infection
no definitive diagnosis skin lesion in drug addict
nummular eczema skin tag
onycholysis spider veins
onychomycosis squamous cell carcinoma
onychoschizia staphylococcal scalded skin syndrome
organoid nevus stasis dermatitis
ota nevus stasis edema
others stasis ulcer
palmoplantar pustulosis steatocystoma multiplex
palpable migrating erythema steroid acne
papular dermatoses of pregnancy steroid use abusemisuse dermatitis
parapsoriasis stevens-johnson syndrome
paronychia strawberry birthmarks
parvovirus b19 infection striae
pemphigus vulgaris subungual hematoma
phototherapy sun spots
phytophotodermatitis sunburn
pigmentation of pregnancy superficial gyrate erythema
pigmented progressive purpuric dermatosis superficial spreading melanoma ssm
pigmented purpuric eruption superficial wound of body region
pilar cyst sweet syndrome
pincer nail deformity sweet’s syndrome
pityriasis alba syphilis
pityriasis lichenoides syringoma
pityriasis lichenoides chronica systemic disease
pityriasis lichenoides et varioliformis acuta telangiectasia macularis eruptiva perstans
pityriasis rosea tick bite
pityriasis rubra pilaris tinea
pityrosporum folliculitis tinea corporis
poikiloderma tinea cruris
poikiloderma of civatte tinea manus
poisoning by nematocyst tinea pedis
polymorphic eruption of pregnancy tinea versicolor
polymorphous light eruption transient acantholytic dermatosis
porokeratosis traumatic blister
porokeratosis of mibelli traumatic ulcer
poroma tuberous sclerosis
porphyria tungiasis
port wine stain ulcer
post-inflammatory hyperpigmentation unilateral laterothoracic exanthem
post-inflammatory hypopigmentation urticaria
post-inflammatory pigmentation urticaria pigmentosa
pressure ulcer urticarial vasculitis
prurigo varicella
prurigo gravidarum varicose veins of lower extremity
prurigo nodularis vascular
prurigo of pregnancy vasculitis
prurigo pigmentosa venous lake
pruritic urticarial papules and plaques of pregnancy verruca vulgaris
pruritus ani viral exanthem
pseudo-glucagonoma syndrome viral exanthems: roseola
pseudofolliculitis barbae vitiligo
pseudorhinophyma wound/abrasion
psoriasis xanthelasma



pustular psoriasis xeroderma pigmentosum
pyoderma xerosis
pyoderma gangrenosum xerotic eczema
pyogenic granuloma
radiodermatitis
raynaud phenomenon
red stretch marks
relapsing polychondritis
rheumatoid nodule
rhinophyma
riehl melanosis
rosacea

Table 6. Full list of 390 standardized skin conditions.

ID Template

1 This is a skin image of {CLASS LABEL}.
2 This is a skin image of {CLASS LABEL}.
3 A skin image of {CLASS LABEL}.
4 An image of {CLASS LABEL}, a skin condition.
5 {CLASS LABEL}, a skin disorder, is shown in this image.
6 The skin lesion depicted is {CLASS LABEL}.
7 The skin cancer in this image is {CLASS LABEL}.
8 This image depicts {CLASS LABEL}, a type of skin cancer.

Table 7. Prompt templates for zero-shot classification.

Hyper-parameters ViT-B16 + GPT77 PanDerm-B + PMB256 ViT-B16 + SigLIP ViT-B32 + GPT77

warmup 1000 1000 1000 1000
weight decay 0.1 0.1 0.1 0.1
LR Scheduler cosine cosine cosine cosine

batch size 4096 2048 2048 512
learning rate 1e-4 1e-4 1e-4 1e-4

epochs 30 30 30 30

Pretrain openai PanDerm webli laion2b s13b b90k
Vision Encoder ViT-B16 PanDerm-B ViT-B16 ViT-B32
Text Encoder GPT77 PMB256 SigLIP GPT77

Table 8. Hyperparameters for DermLIP models pretraining.
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