
EEdit : Rethinking the Spatial and Temporal Redundancy for
Efficient Image Editing

Supplementary Material

7. Analysis on Hidden States in MM-DiT

0.0 0.5 1.0

0.0

0.5

1.0
0.94

0.95

0.96

0.97

0.98

0.99

1.00

Figure 9. Cross-Attention hidden states similarity

0.0 0.5 1.0

0.0

0.5

1.0

0.5

0.6

0.7

0.8

0.9

1.0

Figure 10. Self-Attention hidden states similarity

As shown in the Figure. 9 and Figure. 10, we visual-
ize the cosine similarity of hidden states across different
timesteps in both Cross-Attention and Self-Attention. It
can be observed that Cross-Attention exhibits higher sim-
ilarity, indicating greater redundancy in this module. Con-
sequently, in our approach, Cross-Attention is either fully
computed or entirely skipped to optimize efficiency.

8. Algorithm for Image Editing with SLoC

8.1. Cache Frequency Control

Cache Frequency Control can be formulated as

Sτ+1
ij ←



Sτij + γfτ
ij fτ+1

ij ← fτ
ij + 1

Sτij ≤ TopR%(Sτ [1 . . . LWH])

Sτij fτ+1
ij ← 0

Sτij > TopR%(Sτ [1 . . . LWH])

where γ is a scaling factor that controls the impact of
reuse frequency on the score map S. τ indicates current
time step and τ + 1 indicates next time step. ij indicated
index in score map S and frequency mapMfreq . We have
Mfreq = {fij , i ∈ [1 . . . LW], j ∈ [1 . . . LH]}

8.2. Vanilla SLoC w/o ISS and TIP

Algorithm 2 Image Editing with SLoC
Require: Input image Is, Mask for editing region Ms,

Prompt for editing Pm, Randomly initialized map R,
Bonus for edited region SE and Cache dict Cl,m[:].

Ensure: The edited result I∗

1: Mfreq ← zero[Fi, t, l]
2: Z0 ← cat(VQ-Encoder(Is),Txt-Encoder(Pm))
3: // Image Latent Inversion
4: for t = 1, . . . , T do
5: Zt ← RF-inversion(Zt−1, t− 1, ϕ)
6: end for
7: Z∗

T ← ZT

8: // Image Editing Steps with Caching
9: for t = T, T − 1, . . . L+ 1 do

10: for Fi ← SAl,CAl,MLPl, l ∈ [1, . . .L] do
11: Sl ← (R⊙ SE)⊕Mfreq

12: Ii,l,t ← SeltopR%(Sl)
13: Z∗

l+1 ← scatter(Fi(Z
∗
l , Ii,l,t), Ct+1[l,Fi])

14: Update(Ct+1[l,Fi],Mfreq)
15: end for
16: Z∗

t−1 ← Z∗
t−1 ⊙Ms + Zt ⊙ (1−Ms)

17: end for
18: I∗ ← VQ-Decoder(x0)
19: return I∗

9. Discussion on TIP

We adopt Token Index Preprocessing. This design offers
an additional advantage by reducing the number of function

Table 4. Ablation study for cache. Comparisons of different cache methods in terms of FG fidelity, and computational efficiency.

Method FG preservation Efficiency Speed Up

FID↓ PSNR↑ MSE↓
10−3 SSIM↑

10−1 Steps Inv.(s)↓ Fwd.(s)↓ Inference (s)↓ FLOPs(T)↓ Latency↑ FLOPs↑

No Cache - - - - 28 5.44 5.67 11.30 932.95 1 × 1 ×
50% Step 90.60 24.46 6.66 8.77 14 2.63 2.87 5.69 456.55 2.04× 1.99×
FORA [50] 39.96 31.62 1.74 9.47 28 2.42 2.45 5.05 318.09 2.24× 2.93×
ToCa [76] 84.77 26.16 5.76 8.88 28 3.52 3.52 7.29 332.93 1.55× 2.80×
DuCa [77] 84.85 26.16 5.76 8.88 28 3.26 3.26 6.87 313.00 1.67× 2.98×
SLoC 39.50 31.75 1.72 9.48 28 2.86 2.91 5.96 384.03 1.90× 2.43×
SLoC+TIP+ISS 39.21 31.75 1.71 9.48 28 1.92 2.49 4.60 264.50 2.46× 3.53×

calls within the cache module. Specifically, with a prepro-
cessing overhead of no more than 150ms, we achieve a re-
duction of over 1000ms in cache-induced inference latency.
Since the token selection in our algorithm is independent of
the internal properties of individual tokens or their mutual
interactions, this decoupling is logically equivalent in the
temporal sequence. Consequently, it enables further loss-
less acceleration on top of SLoC.

9.1. Proof of TIP Equivalence with Original Oper-
ations

We maintain a cache of intermediate features for a set of to-
kens in SLoC. At each iteration step, each token is assigned
a score based on (i) a random or seed-based component and
(ii) a function of its selection frequency (theMfreq). The
top R% of tokens are selected for updating the cache. It
follows algorithm 2.

We prove that this preprocessing-based approach is
mathematically equivalent to performing scoring, sorting,
and token selection online at each iteration.

9.2. Notation and Problem Setup
• N : Total number of tokens, indexed as {1, 2, . . . , N}.
• T : Total number of diffusion iterative steps.
• s

(t)
i : Score of token i at step t, given by

s
(t)
i = f(r

(t)
i) +M(t)

freq,i

where:
– r

(t)
i : Random (or seed-based) component.

– M(t)
freq,i: Frequency of times token i has been selected

before step t.
– f(·): A deterministic function adjusting scores, region

score bonus adopted in SLoC here.
• After computing {s(t)i }Ni=1, the top R% tokens are se-

lected for cache updates.
• For simplicity in our proof, we have omitted the layer

index and module type (Cross-Attention, Self-Attention,
MLP).

9.3. Original (Online) Algorithm Description
The online method iterates as follows 2:

1. For t = 1 to T :
(a) Compute s

(t)
i for each token i.

(b) Sort tokens by s
(t)
i and select the top R%.

(c) Update the cache for these selected tokens.
(d) IncrementM(t+1)

freq,i for each selected token i.

Here, r(t)i is reproducible when using a fixed seed.

9.4. Proposed Optimization (TIP)
The optimized approach precomputes the cache update and
selection process 1:
1. Generate and iterate all r(t)i for i = 1, . . . , N and t =

1, . . . , T .
2. Simulate the selection process offline:

(a) InitializeM(1)
freq,i = 0 for all i.

(b) For each t = 1 to T :
• Compute s

(t)
i = f(r

(t)
i) +M(t)

freq,i.
• Sort and select the top R%, recording indices as
I(t)top .

• UpdateM(t+1)
freq,i for selected tokens.

3. Store {I(t)top }Tt=1 for later use.

At inference, we read precomputed I(t)top instead of recom-
puting scores.

9.5. Proof of Equivalence
We prove that both methods select identical tokens at each
step.

Step 1 Equivalence. At t = 1, we haveM(1)
freq,i = 0, so

s
(1)
i = f(r

(1)
i) + 0.

Since r
(1)
i is identical in both methods (fixed seed), sort-

ing s
(1)
i gives the same top R% tokens, ensuring identical

updates and increments forM(2)
freq,i.

Inductive Hypothesis. Assume for steps k < t that

I(k)top (offline) = I(k)top (online).

Thus,M(t)
freq,i is identical in both methods.

Step t Equivalence. At step t,

s
(t)
i = f(r

(t)
i) +M(t)

freq,i

Since r
(t)
i andM(t)

freq,i are identical (by induction), we get

s
(t)
i (offline) = s

(t)
i (online),

ensuring that sorting and selecting the top R% gives identi-
cal indices sets:

I(t)top (offline) = I(t)top (online).

Conclusion by Induction. By induction, token selection
and cache updates remain identical for all t = 1, . . . , T .
Thus, preprocessing achieves the same outcome as the on-
line approach.

10. Implementation Details
The experiments were conducted on a machine with the fol-
lowing hardware and software specifications:

10.1. Hardware Specifications
• Architecture: x86 64
• CPU Op-Modes: 32-bit, 64-bit
• Address Sizes: 52 bits physical, 48 bits virtual
• Byte Order: Little Endian
• Total CPU(s): 128
• On-line CPU(s) List: 0-127
• Vendor ID: AuthenticAMD
• Model Name: AMD EPYC 9K84 96-Core Processor
• CPU Family: 25

10.2. Software Specifications
• Operating System: Ubuntu 22.04.3 LTS
• Python 3.12.3
• huggingface-hub: 0.26.2
• numpy: 1.26.4
• torch: 2.5.1
• torchmetrics: 1.6.1
• transformers: 4.46.1

11. Metrics
Our experiments employ a selection of the most widely used
image quality, instruction adherence, and efficiency metrics.

Frechet Inception Distance (FID) and Learned Per-
ceptual Image Patch Similarity (LPIPS) are feature-
based similarity metrics computed using pretrained neural
networks. Lower values indicate higher similarity. We use
InceptionV3 for FID and AlexNet for LPIPS mea-
surements. Peak Signal-to-Noise Ratio (PSNR) and Mean
Squared Error (MSE) are pixel-space similarity metrics.

SLoC w/o TIP SLoC w/ TIP``Heart’’ ``Circle’’

7.52s 6.86s

Figure 11. A qualitative example. Token index preprocessing
shows loss-less acceleration for editing quality.

A higher PSNR and a lower MSE indicate greater image
similarity. CLIPScore measures how well an image gen-
eration or editing result follows a given prompt using a
pretrained CLIP model. A higher score indicates stronger
adherence to the prompt. In our experiments, we use the
clip-vit-base-patch16 model. FLOPs quantify
the computational cost associated with model inference. A
higher value indicates greater computational overhead.

12. More Experiments

Table 5. Performance comparison. An ablation study is con-
ducted on imbalanced inversion and denoising for background
preservation, foreground fidelity and inference time.

Inversion Denoising
BG Preservation FG Fidelity Inference ↑

LPIPS ↓
×10−2 LPIPS ↓

×10−3 PSNR ↑ FID↓ Time (s)

Full Step Full Step 1.98 - - - 13.27

2-step skip
Full Step

31.38 1.98 31.93 3.35 10.16
3-step skip 31.38 1.98 25.79 3.23 9.31
4-step skip 31.38 1.98 26.50 3.31 8.76

Full Step
2-step skip 1.97 50.40 31.93 28.51 11.79
3-step skip 1.97 121.44 25.79 64.10 9.28
4-step skip 1.96 102.67 26.50 56.93 8.54

We compared the edited results in terms of image simi-
larity and efficiency. The Table. 4 demonstrate that our ap-
proach, when incorporating all optimizations (TIP + ISS),
achieves the best performance in both fidelity and effi-
ciency. SLoC achieves a 2.46× significant improvement in
inference latency and a 3.53× acceleration in computational
efficiency compared to the original unaccelerated version.
Additionally, our method demonstrates either improved fi-
delity or remains at a state-of-the-art level across various
editing tasks.

13. Related work

We thanks the related work about editing both image
and video, such as VideoGrain [67], FastVAR [15], Int-
Lora [14], FollowFamilty [5, 11, 32, 34, 37, 39, 40, 42, 56,
66, 69, 74], Tpsence [72], Pointnorm [71], MotionDiff [41],
FastScene [38], DreamRelation [61] and Dreamvideo [60],
and Lazymar [65].

14. Gallery
We present additional editing results, including prompt-
guided, drag-guided, and reference-guided editing. Further-
more, we adapted the community-developed Redux model
for img2img tasks, enabling the generation of impressive
image variations.

Prompt-guided

A cartoon animation of a panda in the forestA cartoon animation of a castle in the distance A professional photograph of a fire hydrant
on the grass, ultra realistic

A professional photograph of a tiger
on the beach, ultra realistic

A cartoon animation of a squirrel in the forest A cartoon animation of a goose in the forest A cartoon animation of a panda in the forest A professional photograph of a puppy
on the grass, ultra realistic

Reference-guided

Drag-guided

A photo of goats A photo of a dog and a cat Majestic lion basking in the sunlight. Marble bust of a young Roman noble

An oil painting of a female Pastoral scene with horses and dogs
in a countryside setting

A photo of a man holding a crocodile Mountain peaks glowing in the sunset

A red apple and a bird sitting on it A golden pagoda in the rain Photo of a horse and a cat standing
on rocks near the ocean

A closed eyes cat sitting on wooden floor

A beautiful woman with hat on head A cute dog holding a pink heart A woman with monster around her face
A painting of a car in the snow

with mountains in the background

Image Variation

Futuristic holographic art with iridescent colors Folk art style with decorative patterns and flat perspective

Digital art in cyberpunk style with neon colors and high contrastTraditional Chinese painting with fine ink brushwork and subtle gradients

A photo of a cat

Lighthouse, coast, grassland, sea

A photo of a leaf

A boy holding an umbrella

The oil painting of a beautiful scene

Drag Diffusion FastDrag RegionDragOursDrag-guided

A photo of mountains covered with snow

OursReference-guided TF-ICON PrimeComposer

A cartoon animation of a panda in the forest

An oil painting of a hot dog, Van Gogh Style

An oil painting of a chocolate doughnut, Van Gogh Style

An oil painting of a hamburger, Van Gogh Style

A professional photograph of a skyscraper in the distance, ultra realistic

A professional photograph of a castle, ultra realistic

DCCF

	Analysis on Hidden States in MM-DiT
	Algorithm for Image Editing with SLoC
	Cache Frequency Control
	Vanilla SLoC w/o ISS and TIP

	Discussion on TIP
	Proof of TIP Equivalence with Original Operations
	Notation and Problem Setup
	Original (Online) Algorithm Description
	Proposed Optimization (TIP)
	Proof of Equivalence

	Implementation Details
	Hardware Specifications
	Software Specifications

	Metrics
	More Experiments
	Related work
	Gallery

