
A. Proof
A.1. Proof of Theorem 3.1
Theorem 3.1 Given the objective of Eq. (4), the optimal policy p

⇤
✓(xt�1|xt, z) has the following expression:

p
⇤
✓(xt�1|xt,z)_exp{Q

⇤(xt�1,z)+↵2log ppre(xt�1|xt,z)

↵1 + ↵2
},

where Q
⇤(xt�1, z)=r(x0,z)I{t�1=0}+ (↵1 + ↵2)· log

P
xt�2

exp{Q⇤(xt�2,z)+↵2 log ppre(xt�2|xt�1,z)
↵1+↵2

}.

Proof. According to [2, 20], we have

p✓k(xt�1|xt, z) _ exp{
Qk(xt�1, z) + ↵2 log ppre(xt�1|xt, z) + ↵3 log p✓k�1(xt�1|xt, z)

↵1 + ↵2 + ↵3
},

where Qk(xt�1, z) = r(x0,z)I{t�1=0}+(↵1+↵2+↵3) log
P

xt�2
exp{Qk(xt�2,z)+↵2 log ppre(xt�2|xt�1,z)+↵3 log p✓k�1

(xt�2|xt�1,z)

↵1+↵2+↵3
}.

When t = 1, we have

log p✓k(x0|x1, z) _
r(x0,z) + ↵2 log ppre(x0|x1, z) + ↵3 log p✓k�1(x0|x1, z)

↵1 + ↵2 + ↵3
,

log p✓k�1(x0|x1, z) _
r(x0,z) + ↵2 log ppre(x0|x1, z) + ↵3 log p✓k�2(x0|x1, z)

↵1 + ↵2 + ↵3
,

· · ·

log p✓1(x0|x1, z) _
r(x0,z) + ↵2 log ppre(x0|x1, z) + ↵3 log p✓0(x0|x1, z)

↵1 + ↵2 + ↵3
.

(7)

After simplifying the formula above, when k ! 1, we have

p
⇤
✓(x0|x1, z) _ exp{r(x0,z) + ↵2 log ppre(x0|x1, z)

↵1 + ↵2
}.

The convergence of p✓k(xt�1|xt, z) is linked to the convergence of Qk(xt�1, z), and the convergence of Qk(xt�1, z) further
depends on that of p✓k(xt�2|xt�1, z) ultimately tying the convergence of p✓k(xt�1|xt, z) to p✓k(xt�2|xt�1, z). Due to
the convergence of p⇤✓(x0|x1, z), we can obtain the convergence of p✓k(x0|x1, z). Following a similar way to Eq. (7), this
conclusion can be readily established.

Lemma A.1. Defined a policy ⇡(a|s) _ exp{↵A(s, a)}, we get that the entropy H(⇡) is monotonically decreasing with
respect to ↵.

Proof. Defined Z =
P

a exp{↵A(s, a)}, we have

H(⇡) =
X

a

exp{↵A(s, a)}
Z

(� log
exp{↵A(s, a)}

Z
).

Taking the derivative of H(⇡) with respect to ↵, we have

H
0(⇡) =�

P
a(exp{↵A(s, a)}A(s, a) + exp{↵A(s, a)}↵A(s, a)2)Z

Z2

+

P
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P
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Z2

+

P
a(exp{↵A(s, a)}A(s, a))

Z

=↵
(
P
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P

a(exp{↵A(s, a)}A(s, a))� (
P

a(exp{↵A(s, a)}A(s, a)2)(
P

a(exp{↵A(s, a)}))
Z2

=
1

2

X

ai,aj

(exp{↵A(s, ai) + ↵A(s, aj)}(2A(s, ai)A(s, aj)�A(s, ai)
2 �A(s, aj)

2)

0.



A.2. Proof of Theorem 3.2
Theorem 3.2 When ↵̂1  ↵1, we have H(p⇤✓(xt�1|xt, z); ↵̂1,↵2)  H(p⇤✓(xt�1|xt, z); ↵1,↵2). Specially, compared to not
including an entropy term, that is ↵1 = 0, in the objective function of Eq. (4), adding an entropy term results in a higher
entropy after the algorithm converges, that is H(p⇤✓(xt�1|xt, z);↵1,↵2) � H(p⇤✓(xt�1|xt, z); 0,↵2).

Proof. Since

exp{Q
⇤(xt�1, z) + ↵2 log ppre(xt�1|xt, z)

↵̂1 + ↵2
} � exp{Q

⇤(xt�1, z) + ↵2 log ppre(xt�1|xt, z)

↵1 + ↵2
}.

According to Lemma A.1, this conclusion is easy to draw.
Adding an entropy term of Eq. (4), from Theorem 3.1, we get

p
⇤
✓(xt�1|xt, z) _ exp{Q

⇤(xt�1, z) + ↵2 log ppre(xt�1|xt, z)

↵1 + ↵2
}.

Without entropy term of Eq. (4), we get

p̂
⇤
✓(xt�1|xt, z) _ exp{Q

⇤(xt�1, z) + ↵2 log ppre(xt�1|xt, z)

↵2
}.

According to Lemma A.1, we have H(p⇤✓(xt�1|xt, z);↵1,↵2) � H(p⇤✓(xt�1|xt, z); 0,↵2).

A.3. Proof of Theorem 3.3
Theorem 3.3 If C = minxt�1,yt�1 [log ppre(yt�1|xt, z) � log ppre(xt�1|xt, z)]/[Q⇤(xt�1, z) � Q

⇤(yt�1, z)] > 0, the
objective function contains only a KL term and no entropy term, that is ↵1 = 0, if 1

C  ↵̂2  ↵2, we have
H(p⇤✓(xt�1|xt, z); 0, ↵̂2) � H(p⇤✓(xt�1|xt, z); 0,↵2).

Proof. Let a , xt�1, ↵
0
2 = 1

↵2
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P
a exp{
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} =
P

a exp{↵0
2Q
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0
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log ppre(ai|xt, z)� log ppre(aj |xt, z)

Q⇤(aj , z)�Q⇤(ai.z)
).

Therefore, H(p⇤✓(a|xt, z); 0,↵0
2) is monotonically inceasing with respect to ↵

0
2 2 [0, C]. Based on the relationship between

↵2 and ↵
0
2, it is straightforward to prove this conclusion.



Algorithm 1: Algorithm of AdaEnt
Input: Prompt set: P; Training epoch: E ; Denoising step: T .

1 Initialize pretrained diffusion model ✏✓ and prediction model f�;
2 for e = 1 to E do
3 for Prompt p in P do
4 // generate sample trajectory of p iteratively:
5 {xp

T �1, ...,x
p
0} = {µ(xp

T , t) + �T z, ..., µ(x
p
1, 1) + �1z}.

6 // compute reward:
7 R = r(xp

0, z).
8 for Timestep t in reversed T do
9 // perform one step of denoising:

10 xp
t�1 = µ(xp

t , t) + �tz.
11 // predicting �:
12 �t�1 = f�(x

p
t�1).

13 // dynamic stop:
14 if �t�1 � � then
15 break.

16 // compute KL:

17 KLt�1 = d
2

h
d�2

t�1+kµ✓�µ̂k2

d�̂2
t�1

+ ln
�̂2
t�1

�2
t�1

i
� d

2 .

18 // compute Entropy:
19 Ht�1 = d

2 ln
�
2⇡e�2

t�1

�
.

20 optimize ✏✓ according to Eq. (5) and PPO.

21 optimize f� according to Eq. (6).

Output: learned model parameter ✓.

B. AdaEnt Algorithm
The procedure of the AdaEnt method is shown in Algorithm 1.

C. Experiment Supplementary
C.1. Experiment Details
In this paper, all models are trained with usually 100 epochs and batch size 64, except using aesthetic score=7 as the terminal
epoch in the computation efficiency experiment. We adopt Adam optimizer with �1 = 0 and �2 = 0.99 and the learning rate
is set to 0.0003.

The image classifier f(·) is a simple multi-layer CNN network, with only four convolution blocks (kernels [3,3,3,1]) and
a linear layer. f(·) is adaptively trained based on the current RL-finetuning samples xt, where we take t 2 [T � 5, T ] as
negative samples and t 2 [0, 5] as positive samples. Denoising is terminated when f(xt) indicates that xt is approximated to
the clean image (i.e., � < 1e�8).

C.2. Analysis of Computational Cost
As f(·) is lightweight, the introduced computation overhead is trivial. In Sec. 5.6, we have discussed the computational
efficiency of AdaEnt. In Fig. 3(b), the denoising steps in training drops from 50 to less than 30, corresponding to 40%
reduction. Together with it, the learning efficiency of AdaEnt is also optimized since much fewer total training steps are
required for the same reward score, leading to reduced overall training time (Tab. 3 left). In Tab. 3 right, the overhead of
entropy and adjustment is light (GFLOPS " less than 1%).

C.3. Explanation of Chosen Metrics
In this study, we evaluate image quality and relevance using several widely adopted metrics, including ImageReward,
Inception Score (IS), PickScore, and ClipScore. Below, we provide a brief description of each metric, which substantially



demonstrates that the results in Tab. 1 and Tab. 2 indicate the superior overall quality of our generated images.
• ImageReward [46]: ImageReward is a learning-based metric specifically designed to align image quality assessments with

human preferences. It is trained on a large-scale dataset of human preference annotations, making it particularly effective
in evaluating generative models and text-to-image synthesis. Compared to traditional metrics, ImageReward better reflects
subjective image quality and semantic alignment.

• Inception Score (IS) [32]: IS is a commonly used metric for assessing the quality of generative models. It measures
both the diversity and realism of generated images by evaluating the entropy of class labels predicted by an Inception
network. Higher IS values indicate that the generated images contain meaningful and diverse content. However, IS has
been criticized for its insensitivity to intra-class diversity and lack of direct alignment with human perception.

• PickScore [17]: PickScore is a deep learning-based metric designed to evaluate image-text alignment by predicting human
preferences. It leverages a contrastive learning approach to determine how well an image corresponds to a given text
prompt. PickScore demonstrates a strong correlation with human judgment and has been shown to outperform previous
automatic metrics in evaluating image-text consistency.

• ClipScore [27]: ClipScore quantifies image-text alignment based on the CLIP model’s cosine similarity between image
and text embeddings. It serves as a fast and scalable approach to assess semantic relevance but may exhibit biases due to
the CLIP model’s pretraining data. While ClipScore is effective in measuring text-image alignment, it does not directly
capture aesthetic quality or fine-grained visual details.
These metrics collectively provide a comprehensive evaluation of image generation performance, balancing aspects of

realism, diversity, alignment, and human preference.

C.4. Discussion of Denoising Step Reduction
In training, omitting a few steps has a limited impact on the diffusion model. In inference, AdaEnt still generates promising
images with superior quality. For demonstration, as shown in Fig. 9, the main content of generated images is determined in
the early denoising stage, while most AdaEnt’s truncations are conducted after 50%. It also indicates that the denoising is
robust to the slight step variations. In Tab. 4, we further compare the inference results with dynamic truncation (Ours) and
with fixed 32-step truncation (Baselines), where all models are trained to AesScore=7. The results prove the overall superior
quality of images generated by AdaEnt.

0% 25% 50% 100%  
Denoising

75%  

Figure 9. Generated images from different denoising stages.

Table 4. Overall Computation Efficiency of Baseline
and Ours. TDS refers to total denoising steps. The left
part and right part are the metrics of overall training and
single-batch of denoising, respectively.

Method Aes CLIP IS PS

DDPO (32) 0.6675 0.2819 16.27 20.98
DPOK (32) 0.6537 0.2931 16.15 21.40

Ours (50) 0.7000 0.3010 20.58 21.41
Ours (ada.) 0.6739 0.2940 17.54 21.51

C.5. More Visual Impressions of Generated Images
Please refers to Fig. 10, 11, 12, and 13 along with their captions for more visual impressions and corresponding discussions.
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Figure 10. Visual comparison of models optimized for aesthetic style. Results are generated by SD-XL with simple-animal prompts trained
on aesthetic scores. It can be observed that the proposed AdaEnt achieves the best aesthetic performance, with impressive artistic styles,
rich colors, and fine textures.
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Figure 11. Visual comparison of models optimized for prompt-image alignment. We apply prompts with richer semantic-specific infor-
mation to evaluate the prompt-image alignment performance. The metrics below each method’s title are ClipScore and AestheticScore
across these prompts with 30 random seeds, which could measure the aesthetic impressions and prompt-image alignment, respectively.
Our method both qualitatively and quantitatively exhibits promising aesthetic performance with accurate alignment in color, number, com-
position, and location.
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Figure 12. Comparison of generated images from complex prompts after RL fine-tuning with Aesthetic Score on SD-XL. The disparity
between prompts and baseline images is highlighted. Take the the second prompt as an example, while the aesthetic score of DDPO is
higher than ours (7.2 versus 6.5), DDPO over-optimizes the reward and fails to generate the expected objects and styles.



5.9136.6376.133 6.767 6.773

A
d
aE
nt
（
O
ur
s）

6.0096.107 6.595 6.484

D
D
PO

7.166

5.9286.011 6.466 6.298

D
3P
O

6.351

6.0265.949 6.704 6.530 6.280

D
PO

K

6.437

6.851

6.926

6.309

Figure 13. Visual comparison of our method and the baseline on complex prompts after training on the SD-XL model (training curves
shown in Figure 6). The white numbers indicate the aesthetic scores of the generated images. It can be observed that although the baseline
method achieves relatively high aesthetic scores for certain prompts, its generated results do not fully align semantically. In contrast, our
method not only ensures precise semantic alignment but also attains higher aesthetic scores.
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