Image Enhancement on Mobile Devices

Supplementary Material

MobilelE: An Extremely Lightweight and Effective ConvNet for Real-Time

1. Motivation

Principle of Simplicity [41]:

Usability: A simple architecture without complex oper-
ators, making optimization straightforward.

Uniformity: Few core modules for reduced complexity
and faster deployment.

Effectiveness: Strong model performance.

Efficiency: Minimal parameters and computation with
balanced accuracy.

Generally, popular works have developed more efficient
CNN s from three perspectives: 1) Convolutional blocks [7—
9, 16, 33], 2) Attention modules [3, 34, 40, 41], and 3)
Training strategies [1, 2, 25, 32]. We revisit the design of
the efficient model through these components.

For Convolutional Block: By employing a reparame-
terization paradigm, we combine the training advantages
of multi-branch models with the inference advantages of
single-path models, enhancing training performance while
accelerating inference and saving memory.

For Attention Module: We design lightweight and effi-
cient attention modules that achieve an optimal balance be-
tween speed and performance through adaptive weighting
and structural optimization.

For Training Strategy: We tackle efficiency from a dif-
ferent perspective, optimizing training strategies instead of
adding components. Most methods [4, 45] rely on complex
backbones, making model size minimization challenging.
Instead, optimizing training strategies and loss boosts per-
formance and efficiency without added complexity.

Balancing performance and efficiency is crucial, espe-
cially for resource-limited mobile devices. This paper in-
troduces MobilelE, a lightweight CNN for image enhance-
ment. Designed for efficiency, deployability, and strong
performance, MobilelE follows the principles of Simplic-
ity and Effectiveness. By utilizing fundamental CNN build-
ing blocks, it delivers impressive results with a minimal-
ist structure. To validate MobilelE’s practicality, we con-
ducted extensive tests on various commercial smartphones.
Results show that MobilelE, with just 4K parameters and
0.924 GFLOPs, enhances images in real time, exceeding
100 FPS on mobile devices. This makes it a promising so-
lution for efficient edge computing and mobile deployment.

2. Network Architectures

The detailed architecture of MobilelE is summarized in Ta-
ble 1, comprising four key components: shallow feature ex-

traction, deep feature extraction, feature transform, and an
attention mechanism.
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Table 1. MobilelE detailed architecture specifications.

Shallow feature extraction uses an MBRConvb x 5 layer
with a PReLU activation function to capture low-level
features such as textures and edges, which primarily de-
pend on local spatial information. Deep feature extraction
employs two cascaded MBRConv3 x 3 layers to extract
high-level semantic features, further enhanced by the fea-
ture self-transform module for improved feature representa-
tion. A hierarchical dual-path attention mechanism guides
the model to focus on salient image regions. Finally, an
MBRConv3 x 3 layer processes the refined feature maps
into the desired output format. During inference, all MBR-
Conv layers are simplified into standard convolutions, sig-
nificantly reducing computational overhead and model size.

The primary goal of shallow feature extraction is to cap-
ture basic, low-level features that rely on local information
and straightforward nonlinear mappings. These features,
being relatively simple, do not benefit from complex trans-



formations. In contrast, feature self-transform is designed
for deep feature extraction, where high-level semantic fea-
tures require more sophisticated transformations to enhance
their expressiveness. Using feature self-transform in shal-
low feature extraction would be unnecessarily complex and
less effective for capturing basic features. The use of two
cascaded MBRConv3 x 3 layers in the deep feature ex-
traction module strikes a balance between performance and
computational efficiency.

2.1. Design of MBRConv.

1. Kernel Size Selection: The choice of convolution kernel
size has a substantial impact on both the performance and
latency of CNNs. Larger kernels enhance feature extrac-
tion [10] but increase computational complexity and mem-
ory overhead, rendering them less suitable for deployment
on mobile devices. Additionally, mainstream compilers and
libraries often optimize 3 x 3 kernels more effectively than
larger ones [9]. To balance performance and efficiency, es-
pecially for mobile inference, our design is inspired by the
architectural principles of MobileNetV3 [16]. Specifically,
MBRConvb x 5 is utilized in the shallow feature extrac-
tion, whereas the computationally lighter and more efficient
MBRConv3 x 3 is adopted for the subsequent modules.

2. Re-parameterization of MBRConv: MBRConv in-
corporates three types of kernels: 5 x 5,3 x 3, and 1 x 1.
For instance, in MBRConv3 x 3, let the input and output
channels be denoted as in¢ and oute, respectively. Within
the multi-branch structure, the largest kernel determines the
equivalent kernel obtained after re-parameterization. Dur-
ing execution, the input channels are first transformed into
intermediate channels (mid¢) through parallel branches.
The features generated from these branches are then con-
catenated to effectively capture multi-scale information. Fi-
nally, a 1 X 1 convolution integrates these features and re-
duces the channel dimensions to outc.

Re-parameterization is an equivalent transformation that
consolidates multi-branch convolution parameters into a
single standard convolution, ensuring no degradation in
model performance. Specifically, a sequence comprising
a standard convolution and a batch normalization layer can
be equivalently transformed into a single convolution oper-
ation. The operation of a standard convolution can be ex-
pressed as:

Fou = Conv (Fy) = Fypy K + B (1)

(Fyn — mean)

BN (Fy,) =1~ + 8. 2

var

Here, * denotes the convolution operation. Fj,, F,,; rep-
resent the input and output feature maps, respectively.
The convolution kernel, K € Routcxincxkxk dofines the
weights, while B € R%¢ g the bias term. The mean and

var are computed for normalization, and v, 3 are learnable
parameters for scaling and shifting, respectively.

Substituting Fy,,; into the Batch Normalization process
yields:

. (Fin+*K+B—mean) +B

(B = mean) + 8 ©

BN (Conv (Fip,)) = v

= Fin * (Jm-) +

Thus, the new standardized convolution kernel and bias
are given as:

Knew = X
new = = @
Bhew = - (B —mean) + 8

Multi-branch Convolution Fusion: By merging BN pa-
rameters into the convolution kernel and bias, the original
BN-augmented structure is simplified into one without BN
layers. The convolution kernels of all branches are then con-
catenated to form a unified kernel.

For a multi-branch setup, the parameters of 3 x 3,1 x 1,
3x 1, and 1 x 3 convolutions are denoted as { K5x3, B3x3},
{lel, lel}, {K:axh BS><1} and {K1x3, le:s} respec-
tively. Using K3x3 as a reference, other kernels are zero-
padded to match its size. All kernels and biases are
then concatenated along the channel dimension to obtain
{Kmid, Bmida}> which are finally fused with the output’s
1 x 1 convolution:

Fout = Kout * ((Kde * Fin + Bmid) + Bout

= (Kout * Kmid) * Fin + (Kout * Bmid + Bout) (5)

where K, Boyt represent the parameters of the output 1 x
1 convolution. K ;4 and By, represent the equivalent
parameters of the MBRConv3 x 3 converted into a single
standard 3 x 3 convolution. These are defined as:

Krina = Kout * Kinid, (©6)
Bfinal = Kout * Bmid + Bout

2.2. Design of Feature Self-Transform (FST).

Unlike traditional linear weighting methods, FST achieves
second-order feature interaction by performing element-
wise multiplication on the weighted features. Specifically,
the FST derived from MBRConv3 x 3 can be described as:

FST(Fi,) = Scale - (K * F;,, + B)? + Bias
= (Scale - K?)Fy,? 4+ Scale - (2K B * Fy,, + B?) + Bias
(7
where Fj,, represents the input features, and K and B de-
note the parameters of the MBRConv3 x 3. Scale and
Bias are learnable scaling and offset factors. Features con-
structed through second-order interactions preserve their
linear components while effectively capturing nonlinear
characteristics. This approach enriches the network with



complex nonlinear structures, significantly enhancing its
representation capability, especially in scenarios demand-
ing high-dimensional feature extraction.

FST offers rich feature representations through sim-
ple weighting and multiplication operations, with minimal
computational overhead. Compared to adding extra convo-
lutional layers or employing complex nonlinear functions,
this method is simpler, more efficient, and highly suitable
for lightweight models or tasks prioritizing inference speed.

Learnable weight and bias in feature self-transform dy-
namically adjust feature distribution and mitigate optimiza-
tion imbalance from feature range differences. Visual re-
sults (Figure 1) demonstrate significant improvements in
detail restoration and color reconstruction.

(a) Input: F (b) F x F

(¢) FST(F) (d) Ground Truth

Figure 1. Visualization of feature self-transform (FST) ablation.

2.3. Design of Hierarchical Dual-Path Attention.

Inspired by the human visual system’s focus on salient
regions, attention mechanisms enhance feature utiliza-
tion in CNNs by prioritizing critical input areas. Tradi-
tional attention models demand substantial computational
resources, particularly for high-channel, high-resolution
features, which restricts their applicability on resource-
constrained devices.

To overcome these limitations, we introduce a simpli-
fied Hierarchical Dual-Path Attention (HDPA) mechanism
tailored for MobileIE. HDPA integrates hierarchical and
dual-path designs to balance efficiency and performance.

Global average pooling enhances global feature represen-
tation, whereas local max pooling captures fine-grained de-
tails, enabling effective global-local integration. By lever-
aging lightweight convolutions, HDPA minimizes compu-
tational overhead, rendering it particularly suitable for mo-
bile and embedded systems. Moreover, its dual-path struc-
ture facilitates mutual optimization during backpropaga-
tion, thereby improving feature precision.

The mutual optimization process of the dual paths during
backpropagation can be formalized as follows:

OHDPA(F OA,(F OA(F
A = 25l A(F) - F o+ Ay(F) - 230 F

+A§(F) - A(F)

®)
Where F' represents the input feature map, A, (F) the
global attention weights, and A;(F) the local attention
weights. The formula shows how global and local paths dy-
namically influence each other during gradient propagation,
ensuring efficient and precise feature refinement.

2.4. Analysis of LVW loss.

The visualized results (Figure 2) show that LVW loss out-
performs other loss functions in restoring texture details and
achieving more accurate color correction.

Comparing the results of different loss functions, we ob-
serve that other methods struggle to fully recover the intri-
cate structures in challenging regions, such as the striped
fabric (blue area), the clothing folds (red area), and the
wooden handle (green area). These losses tend to produce
slight blurring or color distortions, failing to fully recon-
struct the details present in the ground truth.

In contrast, LVW loss effectively enhances structural
clarity and reduces pixel-level artifacts by adaptively con-
straining outlier pixels. The results show that LVW pre-
serves sharper edge contrast in the striped fabric, maintains
more natural and well-defined clothing folds without exces-
sive smoothing, and achieves more accurate color reproduc-
tion in the wooden handle, outperforming other methods.

3. Mobile Deployment and Efficiency Analysis.

We evaluated the performance of various methods across
four commercial smartphones. Table 2 details the speci-
fications of the smartphones used in the benchmark tests,
including their model, release year, SoC, and GPU config-
urations. Notably, the Honor 30 (#4, released in 2020) was
included in the tests to evaluate the performance limits of
older hardware, providing insights into the model’s adapt-
ability to legacy devices. All evaluations were conducted
using the Al Benchmark application [17] on Android de-
vices. Before deployment, the model was converted step-
by-step from PyTorch to TFLite format (PT —ONNX —
TF — TFLite) to ensure compatibility. Figure 3 illustrates
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Figure 2. Visualization of different loss functions.

the overall evaluation workflow using the Al Benchmark
application.

Phone Model Launch System on Chip (SoC) GPU
(# 1) Xiaomi 14 10/2023 | Qualcomm Snapdragon 8 Gen 3 Adreno 750
(#2) Redmi K70 Ultra | 07/2024 MediaTek Dimensity 9300 Immortalis-G720 MC12
(# 3) Nubia Z50 12/2022 | Qualcomm Snapdragon 8 Gen 2 Adreno 740
(#4) Honor 30 04/2020 Kirin 985 Mali-G77

Table 2. Description of the selected commercial smartphone de-
vices. In the main text, (# 1) Xiaomi 14 is selected as the mobile
device for testing purposes.

As illustrated in Tables 3, 4, and 5, the proposed
MobilelE exhibits exceptional performance across various
commercial mobile devices. Remarkably, even on older
hardware (# 4: Honor 30, released in 2020), it achieves
inference times below 100 ms per image. We adopted the
SCORE [20] to comprehensively evaluate the trade-off be-
tween model performance and efficiency. The SCORE is
formally defined as follows:

22-PSNR

SCORE = C - latency ©)

where PSN R reflects the improvement in image quality,
while latency measures the inference speed. The constant
C serves as a normalization factor.

MobilelE strikes an impressive balance between perfor-
mance and speed, demonstrating its effectiveness not only
on advanced devices but also on older hardware. This high-
lights its remarkable compatibility across diverse hardware
platforms and underscores its practicality and superiority
for commercial applications.

4. More Visual Results

In this section, we provide more visual comparisons: LLE
(Figure 4 and 5), UIE (Figure 6), and ISP (Figure 7).

5. Limitations

CNN-based methods achieve superior performance by dy-
namically learning enhancement strategies, but their com-
putational complexity increases quadratically with image

Inference #1,

Inference #2, m
Inference #3, ms: 6.55
Inference #4, ms: 6.76
Inference #5, ms: 695
Inference #6, ms: 692
Inference #7, ms: 6.84
Inference #8, ms: 6.73
Inference #9, ms: 6.6
Inference #10, ms: 6.77
Inference #11, ms: 6.66
Inference #12, ms: 6.62
Inference #13, ms: 6.82
Inference #14, ms: 6.74
Inference #15, ms:
Inference #16, ms:
Inference #17, ms: 6.4
Inference #18, ms: 9.5
Inference #19, ms: 6.87
Inference #20, ms: 6.68

Initialization Time, ms: 576.0

Avg Latency, ms: 6.72

Latency STD, ms: 0.75

Figure 3. Al Benchmark [17] performance evaluation on LLE.

resolution. In contrast, 3DLUT-based methods rely on effi-
cient lookup and interpolation operations, making their in-
ference time less sensitive to image size. This results in su-
perior efficiency for large images but limits their adaptabil-
ity to diverse tasks, as LUTs must be specifically designed
for each enhancement scenario. Moreover, 3DLUTs rely on
fixed mappings, often resulting in weaker capability.
Future work could explore hybrid approaches that com-
bine CNN adaptability with 3DLUT efficiency, using tech-
niques like pruning, quantization, and knowledge distilla-
tion to enhance speed without compromising versatility.



Method Venue PSNRT PSNR?T Latancy/| (ms, size: 600x400)

Name Year (LOLv1 [36]) | (LOLv2 [38]) | Phone#2| | SCORE,;1 | SCORE,>1 | Phone # 3] | SCORE, ;1 | SCORE,»7 | Phone#4| | SCORE,;1 | SCORE,,1
Kind++ [43] cvr2l 17.75 17.66 - - - - - - - - -
DDNet [31] IEEE TITS 24 21.82 23.02 - - - - -

PairLIE [12] CVPR’23 19.51 19.88 - - - - - -
IAT [5] BMVC’22 23.38 25.46 386.1 3.09 55.18 2823 422 75.46
Zero-DCE [14] CVPR’20 14.86 18.06 135.4 - 0.01 98.8 - 0.01 - - -
3DLUT [39] IEEE TPAMI'20 17.59 19.68 / / / / / / / / /
Zero-DCE++ [24] | IEEE TPAMI'21 14.68 17.23 78.6 - - 74.0 - - 490.6 - -
SCI [27] CVPR’22 14.90 17.30 184.3 - - 131.3 - -
SGZ [47] WACV’22 15.28 17.34 845 - - 72.5 - 486.4
RUAS [25] CVPR’21 16.40 1533 1732 - - 128.1 - - - - -
SYELLE [13] ICCV’23 21.03 21.26 17.5 2.62 3.6 9.8 4.68 6.44 88.8 0.52 0.71
Adv-LIE [35] MMM’ 24 23.02 21.95 - - - - - - - - -
Ours / 23.62 25.08 13.9 119.58 905.0 7.8 213.09 1612.76 72.6 22.89 173.27

Table 3. Comprehensive efficiency comparison of low-light enhancement methods on LOLv1, v2 Datasets. ”-” donates latency > 500 ms
and SCORE < 0.01. The top results are marked: best in red and second in blue.

Method | Venue | PSNRT | Latancy/ (ms, size: 640x480)
Name Year UIEB [23] | Phone # 2] | SCORE? | Phone #3] | SCORET | Phone #4| | SCORE?T
FUnIE-GAN [21] IEEE RA-L’20 19.72 109.2 0.07 95.7 0.08 404.5 0.02
Shallow-UWNet [29] AAAT21 16.69 - - 499.1 - - -
PUIE [11] ECCV’22 21.25 - - - - - -
UIE-WD [28] ICASSP’22 20.92 - - 474.5 0.08 - -
U-Shape [30] IEEE TIP’23 21.25 - - - - - -
FiveA+ [22] BMVC’23 22.51 - - - - - -
Boths [26] IEEE GRSL’23 22.23 85.2 2.84 62.1 3.90 293.4 0.82
SFGNet [46] ICASSP’24 21.66 - - - - - -
LiteEnhanceNet [42] ESWA’24 21.44 257.3 0.31 172.3 0.47 - -
LSNet [48] Arxiv’24 19.24 - - - - - -
Ours / 22.81 25.1 21.54 114 47.43 93.6 5.78

Table 4. Comprehensive efficiency comparison of underwater image enhancement methods on UIEB Dataset. ”-”” donates latency > 500
ms and SCORE < 0.01. The top results are marked: best in red and second in blue.
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Figure 4. Visualization comparison of different Low-Light Image Enhancement models on LOLv1 [36] dataset.



Method ‘ Venue ‘ PSNR ‘ Latancy (ms, size: 448 x448)
Name Year ZRR [19] | Phone #2| | SCORE?T | Phone #3| | SCORE?T | Phone #4] | SCORET
PyNet [19] CVPRW’20 21.19 - - - - - -
AWNet(raw) [6] | ECCVW’20 21.42 - - - - - -
MW-ISP [18] | ECCVW’20 21.16 / / / / / /
LiteISP [44] ICCV’21 21.28 - - - - - -
NAFNet [3] ECCV’22 21.12 98.6 0.53 89.8 0.58 196.5 0.26
SYEISP [13] ICCV’23 20.84 19.3 1.83 17.7 1.99 51.2 0.69
FourierISP [15] AAAT24 21.65 - - - - - -
Ours / 21.43 17.5 4.56 17.2 4.64 45.1 1.77
Table 5. Comprehensive efficiency comparison of image signal processing Methods on ZRR Dataset. ”-” donates latency > 500 ms and

SCORE < 0.01. The top results are marked: best in red and second in blue.
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Figure 5. Visualization comparison of different Low-Light Image Enhancement models on LOLv2 [38] dataset.
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