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6. Related Work

Robotic Datasets. In the early stages of robotics research,
it is typically necessary to collect specific datasets for each
robot, task, and environment, such as RLBench [27] and
CALVIN [43]. Although these datasets are highly cus-
tomized and of high quality, they are limited in quantity
and have poor generalization capabilities. To further en-
hance model performance and generalization, researchers
have collected large amounts of data through teleopera-
tion methods, such as RT-1 [8] and RH20T [20]. These
large-scale datasets cover more scenarios and tasks, sup-
porting multi-task learning, but also bring high data annota-
tion costs. As research progresses, methods for integrating
multiple datasets, such as Open X-Embodiment [53] and
DROID [29], have been proposed to improve model gen-
eralization and data utilization efficiency by merging data
from different sources. However, these methods also face
issues of data inconsistency and potential biases. This pa-
per proposes RoboData, which efficiently integrates multi-
ple datasets and unifies the input and output spaces, thereby
addressing data heterogeneity. Additionally, it breaks the
limitation of training for a single specific task, providing a
unified benchmark for robotic manipulation.

Robotic Policies. Previous works such as R3M [48],
VC-1 [40], ACT [70], and HULC++ [44] typically em-
ploy strategies with a small number of parameters. Sub-
sequent models like RoboFlamingo [35], Corki [26], and
RoboUniView [37] have built on multimodal large models
but have only fine-tuned on limited datasets. Despite ad-
vancements in multi-task learning and few-shot learning,
recent models such as RT-X [53], Octo [61], HPT [64],
CrossFormer [18], GR-2 [12], and OpenVLA [31] have
trained vision-language-action robotic policies on various
datasets. However, these works often pre-train on data from
real robots [20, 29], human videos [21, 48], and simula-
tion domains [43, 71], neglecting the uniformity of physical
space, and achieve good performance only after fine-tuning
on specific datasets. Given that robots operate in 3D phys-
ical environments, their perception and interaction capabil-
ities must integrate 3D sensing, akin to the requirements of
autonomous driving systems.

7. Real world experiment

To evaluate RoboTron-Mani performance in real-world sce-
narios, we constructed a physical evaluation system as illus-
trated in Figure 8. The robotic platform comprises a Dalu
mobile base and an UR3 robotic arm. During experiments,
the mobile base remains stationary, and only the robotic arm

retaining degrees of freedom. The system is equipped with
essential perception and actuation components, including
a Robotiq two-finger gripper, an Intel D435 depth camera
mounted on the wrist of the arm (denoted as cam.ist), and
an Orbbec Gemini Pro depth camera fixed to a stand on the
ground to the left of the arm (denoted as cams;qtic)-

Since RoboTron-Mani requires camera extrinsic parame-
ters, we perform hand-eye calibration prior to experiments.
Using the image data and intrinsic/extrinsic parameters
from both camy,rist and camgiqric, We constructed point
clouds of the scene, which were used for occupancy (OCC)
supervised training to enable the model to learn 3D geo-
metric structures. The system operates on a ROS1-based
communication framework to enable efficient interaction
between the Nvidia 3090 server and the robotic arm.

In Figure 8, we design ten real-world tasks grouped into
three difficulty levels. Easy: pick or push apple, pick ba-
nana or Coke bottle. Medium: open drawer, place lid on
pot, pour Coke into cup. Hard: open drawer and place ob-
ject inside, group similar items, store plush toys. We col-
lect 100 teleoperation demonstrations per task (1000 total)
for training. For evaluation, each task undergoes 10 trials
with manual resets and clear success criteria (e.g., lifting
an apple at least 5 cm). More details are provided in the
supplementary due to space limits. We compare two base-
line models: RoboFlamingo (2D) and RoboUniView (3D),
which, like RoboTron-Mani, are both 3D models.

base, UR3 arm, Robotiq gripper, wrist-mounted Intel D435, and
ground-mounted Orbbec Gemini Pro. Hand-eye calibration and
point cloud fusion enable OCC-supervised training. The system
runs on ROS1 with an NVIDIA RTX 3090 GPU.

In Table 4 Right, RoboTron-Mani outperforms base-
lines across all difficulty levels, especially on medium
and hard tasks, demonstrating stronger generalization and



3D reasoning. While RoboUniView performs reasonably
on easy tasks, it struggles in more complex scenarios.
RoboFlamingo, lacking explicit 3D scene modeling, shows
weaker overall performance.

Model Easy Medium Hard

RoboTron-Mani 82.5% 70.0% 46.6%
RoboUniView* 75.0% 36.6% 23.3%
RoboFlamingo*35.0% 6.6% 6.6%

*

Table 4. Success rates by task difficulty,
results.

indicates reproduced

8. RoboTron-Mani detailed information

In summary, the parameters used in the study are as fol-
lows: H = 12, N = 3, H = 256, W = 256, L = 80,
B = 80, P = 40, C = 1024, Aimage = 0.1, Aoee = 0.1,
Ag = 0.01, and A = 0.5. The optimization strategy em-
ploys AdamW, while the learning rate schedule utilizes co-
sine annealing, with an initial learning rate of 10~* and a
termination rate of 10~%. The model is trained for a total of
10 epochs unless otherwise specified.

9. Action Representation

Different datasets have different methods for obtaining ac-
tions. For example, given the poses at two consecutive time
t+1 .
steps P* = (p',7},,;) and P = (pttl] rqjat), which
are represented by 3D coordinates and quaternions, respec-

tively.
9.1. Euler Angle Difference Method (EADM)

The Euler Angle Difference Method is a way to describe
rotational transformations by calculating the difference in
Euler angles between two poses (or orientations). The spe-
cific steps are as follows:

1. Convert the quaternions r il

qua

t

quat and 7

. to Euler an-
glesrt .. and 7Tl | respectively.

2. Compute the differences in the 3D coordinates and
Euler angles to obtain the action:

(ot ot bl t
At - (p + — P Teuler — Teuler)' (12)

This method is intuitive and easy to understand, but it
may encounter gimbal lock issues when dealing with large-
angle rotations or multiple rotations.

9.2. Composite Rotation Matrix Method (CRMM)

The Composite Rotation Matrix Method describes complex
rotational transformations by multiplying multiple rotation
matrices. A rotation matrix is a linear algebra tool used to
represent rotations in three-dimensional space. The specific
steps are as follows:

t+1

quat L0 TOtation

1. Convert the quaternions réuat and r

matrices 7!, ;... and riFL . respectively.
2. Compute the composite rotation by multiplying the
rotation matrices to obtain the action:
Ay = (p1 — pt, i
)

matriz

~Inv(rt ) (13)

matrix

This method is advantageous because it can conveniently
handle any complex combination of rotations and avoids the
gimbal lock problem.

9.3. Pose Composition Method (PCM)

The pose composition method is a way to describe the po-
sition and orientation of an object in space. By combining
the poses at two consecutive time steps, complex motions
can be described. The specific steps are as follows:

1. Convert the quaternions rt,,,, and 75, to rotation
matrices 7%, ... and rﬁaﬂrm, respectively.

2. Combine the poses to obtain the action:

At = (InU(anatrim) : (PtH - pt)7 Inv(anatriac) ’ R:;Lraltrir
(14)

This method is advantageous because it can conveniently
describe and compute complex motions of objects in space
and is widely used in robotics and computer vision.

10. RoboData detailed information

10.1. CALVIN Dataset

CALVIN is an open-source simulated benchmark specif-
ically designed for learning long-horizon language-
conditioned tasks in robotics. The dataset features four dis-
tinct environment splits, labeled A, B, C, and D. Each en-
vironment contains 6 hours of human-teleoperated record-
ing data, resulting in over 2 million trajectories. However,
only 1% of this data is annotated with language instructions,
amounting to approximately 24,000 trajectories. Each en-
vironment split is uniquely configured with various objects
and scenarios, allowing for comprehensive validation of the
performance, robustness, and generality of the trained poli-
cies across different data combinations.

The benchmark utilizes a 7-degree-of-freedom (7-DOF)
Franka Emika Panda robotic arm equipped with a parallel
gripper. This robotic platform is enhanced with onboard
sensors and captures images from two camera perspectives,
enabling it to effectively execute complex sequences of lan-
guage instructions. The coordinate system is based on the
robot’s body, represented as Right-Forward-Up, where the
X-axis represents the right direction, the Y-axis denotes the
forward direction, and the Z-axis indicates the upward di-
rection.

For action representation, CALVIN employs EADM. To
ensure that actions are appropriately scaled for network pre-
dictions, specific scaling factors are applied: 0.02 for the X,
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Y, and Z axes, and 0.05 for the pitch, roll, and yaw angles.
The states of the gripper are represented using -1 for open
and 1 for closed, facilitating clear action commands.

Space Alignment: RoboData includes all 34 distinct
tasks, providing 20,000 episodes with language instructions
for training. Action representations are regenerated using
CRMM, and camera parameters are obtained through re-
play. Since the other input spaces are consistent with those
predefined by RoboData, no alignment adjustments are nec-
essary.

The dataset evaluates 1,000 unique instruction chains,
focusing primarily on sequential task execution. In each ex-
periment, the robotic agent successfully completes a series
of up to five language instructions in succession. The agent
can only proceed to the next instruction after successfully
achieving the current task, establishing a clear dependency
on the completion of prior actions.

10.2. Meta-World Dataset

Meta-World is a tabletop manipulation benchmark designed
to facilitate the training and evaluation of robotic manipu-
lation policies in a simulated environment. This dataset fo-
cuses on the reinforcement learning domain and does not re-
lease training data. The simulator includes six perspectives:
behindGripper, corner, corner2, corner3, topview, gripper-
POV.

The benchmark utilizes a 4-degree-of-freedom (4-DOF)
Franka Emika Panda robotic arm equipped with a par-
allel gripper, which does not allow end rotation. The
gripper states are represented by the numbers 0.5/-0.5 for
open/close, and the coordinate system is consistent with that
of the CALVIN dataset.

Space Alignment: RoboData includes the ML-45 ver-
sion, which consists of 45 distinct tasks. To address the
lack of training data for simulation learning, we adopt the
scripted policies from Yu et al. [68] and introduce Gaussian
noise N (0, 0.1) to the generated actions at each step, result-
ing in a total of 22,500 trajectories, with each task produc-
ing 500 successful trajectories. To align with RoboData’s
predefined settings, we extract observations from the cor-
ner2 and gripperPOV perspectives. The rotational variables
in the actions are zero-padded, and the gripper states are
represented using -1 for open and 1 for closed, while other
parameters remain unchanged.

For performance evaluation, we test on 20 unseen start
and goal configurations for each task, totaling 900 unseen
configurations. We report the average performance over
these 900 trajectories, providing a comprehensive measure
of the model’s ability to generalize to new tasks and config-
urations.

10.3. LIBERO Dataset

LIBERO is a lifelong learning benchmark that includes
multiple task suites involving various language-labeled
rigid and articulated-body manipulation tasks. The dataset
consists of a total of 130 tasks and 6,500 trajectories. The
simulator includes four perspectives: frontview, birdview,
agentview, sideview, all with a resolution of 256 x 256
pixels. The action representation differs from that used in
CALVIN, employing CRMM to define actions.

Space Alignment: RoboData includes the LIBERO-90
suite, which consists of 90 manipulation tasks, each with
50 demonstration trajectories collected through human tele-
operation, providing a rich set of examples for training
and evaluation. We select frontview and birdview as the
observation perspectives, and camera parameters are ob-
tained through replay. The coordinate system is defined as
Forward-Left-Up. Due to differences in the coordinate sys-
tem and workspace compared to the predefined settings in
RoboData, we align them through rotation and translation:

0O 1 0 03
-1 0 0 0 ;
WriBERO = 0 0 1 —-01 WiTsERO-
0 0 O 1

The states of the gripper are similarly represented using -1
for open and 1 for closed.

During evaluation, we test on 20 unseen start and goal
configurations for each task, totaling 1,800 unseen configu-
rations. This approach allows for a comprehensive assess-
ment of the agent’s performance and generalization capabil-
ities, ensuring that the evaluation reflects the agent’s abil-
ity to adapt to new situations and previously unencountered
scenarios.

10.4. RoboMimic Dataset

RoboMimic is a large-scale robotic manipulation bench-
mark designed to study imitation learning and offline re-
inforcement learning. The dataset includes 5 distinct ma-
nipulation tasks, each with a dataset of demonstrations tele-
operated by proficient humans. These tasks are designed
to enhance the learning effectiveness of robots through real
human demonstrations.

Space Alignment: RoboData includes 3 of these tasks
(Lift, Can, Square) and excludes the other two dual-arm
tasks. Given that the characteristics of RoboMimic align
with those of LIBERO, all alignment methods can refer to
LIBERO.

During evaluation, we test on 20 unseen start and goal

configurations for each task, totaling 600 unseen configura-
tions.



Figure 9. Evaluation Datasets. We evaluate RoboTron-Mani across five simulation benchmarks and present policy rollout visualizations
of the experiments. From left to right, the benchmarks include CALVIN, Meta-World, LIBERO, RoboCasa, and Robomimic. Experiment

details can be found in Section 4. 1.

10.5. RoboCasa Dataset

RoboCasa is an open-source simulation benchmark de-
signed to study robotic manipulation tasks in household en-
vironments, utilizing a 12-DOF Franka robot, where the
first 7 degrees of freedom are related to manipulation and
the remaining 5 are related to mobility. The dataset in-
cludes a simulation environment featuring 120 distinct real-
world scenes, thousands of interactive objects, and house-
hold appliances, utilizing generative Al tools to create
environmental textures and 3D objects. The RoboCasa
dataset introduces 100 systematic evaluation tasks, consist-
ing of 25 atomic tasks and 75 composite tasks generated
with the guidance of large language models. Additionally,
RoboCasa provides a large-scale multi-task dataset contain-
ing over 100,000 trajectories for model training, showcas-
ing performance improvements achieved through behavior
cloning training with synthetic data, as well as the applica-
bility of simulation data in real-world tasks. These features
make RoboCasa an important resource for researching and
developing language-conditioned robotic technologies, lay-
ing a solid foundation for advancing intelligent applications
of robots in household environments.

Space Alignment: RoboData includes 5,000 samples
collected through remote control, utilizing two perspec-
tives: front view and eye-in-hand. Only the degrees of free-
dom related to manipulation are retained. Given that the
characteristics of RoboCasa align with those of LIBERO,
all alignment methods can refer to LIBERO.

During evaluation, we test on 20 unseen start and goal
configurations for each task, totaling 2,000 unseen configu-
rations.

10.6. ManiSKkill2 Dataset

ManiSkill2 is a unified benchmark designed for learn-
ing generalizable robotic manipulation skills, built on the
SAPIEN platform. It includes 20 out-of-the-box task fami-

lies, featuring over 2,000 distinct object models and more
than 4 million demonstration frames. The dataset sup-
ports fast visual input learning algorithms, enabling a CNN-
based policy to collect samples at approximately 2,000
frames per second (FPS) using just one GPU and 16 pro-
cesses on a workstation. As the next generation of the
SAPIEN ManiSkill benchmark, ManiSkill2 addresses criti-
cal pain points often encountered by researchers when uti-
lizing benchmarks for developing generalizable manipula-
tion skills, covering various task types, including station-
ary/mobile bases, single/dual-arm, and rigid/soft-body ma-
nipulation tasks. This extensive diversity of tasks and ob-
jects aims to enhance the robustness and applicability of
robotic manipulation algorithms in real-world scenarios,
making it an essential resource for advancing research in
the field.

Space Alignment: RoboData includes 20 tasks related
to single-arm manipulation from the ManiSkill2 dataset.
The coordinate system and workspace are defined as
Forward-Right-Down and [-0.26, -0.79, -1.17] to [0.85,
0.76, 0.00]. To ensure spatial consistency and compatibility,
the corresponding coordinate transformations are applied:

ori
Witaniskiliz = Witaniskiuz-

coro
coor
I
—_
o

The action representation uses CRMM to replace PCM.
Since the original data did not include the camera’s intrin-
sic and extrinsic parameters, we replayed the data and saved
the relevant parameters.

During evaluation, we test on 20 unseen start and goal
configurations for each task, totaling 400 unseen configura-
tions.



10.7. RoboCAS Dataset

RoboCAS is a benchmark proposed by Meituan’s Embod-
ied Intelligence Team, specifically designed for complex
object arrangement scenarios in robotic manipulation. It is
the first benchmark of its kind for such tasks and the first to
employ a flexible and concise scripting strategy to collect
samples in a cost-effective and efficient manner. RoboCAS
showcases the handling of dispersed, ordered, and stacked
objects within a highly realistic physical simulation envi-
ronment, aiming to enhance robots’ operational capabilities
and performance across diverse settings. The benchmark
provides a variety of proprioceptive observations and visual
data, including RGB images and depth maps captured from
the left gripper camera, base camera, and static camera.

Space Alignment: RoboData includes all samples, uti-
lizing only the base camera and static camera. The coordi-
nate system and workspace are defined as Forward-Left-Up
and [-0.70, -0.82, 0.062] to [0.85, 0.67, 0.92]. To ensure
spatial consistency and compatibility, the following coordi-
nate transformation is applied:

0 1 0 0.3

100 0
WRLBench = 0 01 07 WRLBench'

0 0 0 1

Since only end-effector positions are provided in the
dataset, the research team utilized a composite rotation
matrix to generate corresponding action representations,
changing the gripper’s open/close state from 0/0.04 to -1/1.
Notably, the RGB images from this perspective are 480x640
pixels; to maintain consistency across all data in RoboData,
we only extract the central region of 480x480 pixels.

During evaluation, we test on 20 unseen start and goal
configurations for each task.

10.8. RLBench Dataset

RLBench is a challenging benchmark and learning environ-
ment specifically designed for robot learning. This bench-
mark features 18 completely unique, hand-designed tasks
that range in difficulty from simple target reaching and door
opening to more complex multi-stage tasks, such as opening
an oven and placing a tray inside. RLBench provides a va-
riety of proprioceptive observations and visual observation
data, including RGB images, depth maps, and segmentation
masks from the left shoulder, right shoulder, wrist, and front
views.

Space Alignment: RoboData includes all experiments,
totaling 1.8 experiments, with visual input extracted from
the wrist and front views. The coordinate system in
this dataset differs from that of other datasets, defined as
Forward-Left-up, with a workspace range from [-0.89, -
0.72, 0.80] to [0.56, 0.69, 1.89]. We apply spatial transfor-

mations to shift the data into a predefined coordinate sys-
tem.

0 1 0 O

100 0
WRLBench = 0 0 1 07 W}%LBench'

0 0 0 1

Additionally, only end-effector positions are provided, so
we use CRMM to transform action representations, chang-
ing the gripper’s open/close state from 0/1 to -1/1.

During evaluation, we test on 20 unseen start and goal
configurations for each task, totaling 360 unseen configura-
tions.

10.9. Colosseum Dataset

Colosseum is a benchmark that complements RLBench by
addressing the limitations of single environmental variables.
It features 20 diverse manipulation tasks that enable sys-
tematic evaluation of models across 14 axes of environ-
mental perturbations. These perturbations include changes
in the color, texture, and size of objects, as well as vari-
ations in tabletop surfaces, backgrounds, and the physical
properties of objects. Additionally, lighting conditions, dis-
tractors, and camera poses are adjusted. All configurations
align with those of RLBench, allowing researchers to test
and compare the robustness and adaptability of their mod-
els under a wider range of environmental conditions.
Space Alignment: RoboData includes all samples, and
the alignment method is consistent with that of RLBench.

11. Comparison with OpenVLA

To evaluate the superiority of our model architecture,
we compare RoboTron-Mani with the currently best-
performing OpenVLA. To ensure a fair comparison, we
set the window size to 1, and train RoboTron-Mani from
scratch, while OpenVLA is fine-tuned on the officially re-
leased weights.

As shown in Table 6, RoboTron-Mani outperforms
OpenVLA (LoRA) in multiple metrics, particularly in
Task 3-5 and average sequence length. This indicates
that RoboTron-Mani can capture longer dependencies when
handling tasks, thereby improving model accuracy. These
results not only demonstrate the superior performance of
the RoboTron-Mani architecture but also provide valuable
references for future research.

Task Completed in a Sequence
1 2 3 4 5
78% 55% 29% 17% 8% 1.86
81% 54% 37% 25% 16%  2.15

Avg Len

OpenVLA (LoRA)
RoboTron-Mani(ours)

Table 6. Performance comparison with OpenVLA on CALVIN.



12. Experiment Details

The success rates of the expert models in the Table |
are organized from the following sources: The evaluation
methods on the CALVIN [43] dataset are sourced from
the official CALVIN leaderboard (url: http://calvin.cs.uni-
freiburg.de/). In the Meta-World [68] dataset, the results
of PAD [24], GR-1 [67], SuSIE [7], RT-2* [9], and RT-
1 [8] come from PAD [24], while the results of PRISE [72]
are derived from related papers. In the Libero [36] dataset,
the results of QueST [47], VQ-BeT [32], PRISE [72], Dif-
fusionPolicy [16], ACT [70], and ResNet-T [36] all come
from QueST [47], while the results of MDT [58] and
Distill-D [25] are sourced from MDT [58]; the results of
MalL [28], ATM [66], and MUTEX [59] come from their
respective research papers. The results of RoboCasa [50] in
the RoboCasa [50] dataset are sourced from related papers.
In the Rt-1 [8] dataset, all results come from CogACT [34]
paper.

The success rates of each task for RoboData on various
datasets are shown in the Table 8, 9, 10, 11, 7.

Task Name Success Rate
CoffeePressButton 100%
CoffeeServeMug 50%
CofteeSetupMug 25%
CloseDoubleDoor 30%
CloseSingleDoor 100%
OpenDoubleDoor 0%
OpenSingleDoor 45%
CloseDrawer 100%
OpenDrawer 80%
TurnOffMicrowave 75%
TurnOnMicrowave 85%
PnPCabToCounter 45%
PnPCounterToCab 50%
PnPCounterToMicrowave 35%
PnPCounterToSink 40%
PnPCounterToStove 60%
PnPMicrowaveToCounter 70%
PnPSinkToCounter 40%
PnPStoveToCounter 40%
TurnOffSinkFaucet 70%
TurnOnSinkFaucet 55%
TurnSinkSpout 90%
TurnOffStove 35%
TurnOnStove 55%
PrepareCoffee 0%
ArrangeVegetables 0%
MicrowaveThawing 0%
RestockPantry 0%
PreSoakPan 0%

Table 7. RoboTron-Mani Success Rates on Various Tasks in Robo-
Casa [50].

Table 8.

Task

Success Rate

rotate_blue_block_right
move_slider_right
lift_red_block_slider
place_in_slider
turn_off_lightbulb
turn_off_led
push_into_drawer
lift_blue_block_drawer
lift_pink_block_slider
open_drawer
lift_pink_block_table
turn_on_lightbulb
rotate_blue_block_left
push_blue_block_left
close_drawer
rotate_red_block _right
push_pink_block right
push_red_block_right
push_red_block_left
lift_blue_block_table
place_in_drawer
move_slider_left
rotate_red_block_left
turn_on_led
lift_red_block_table
stack_block
push_pink_block_left
lift_blue_block_slider
unstack_block
rotate_pink_block_left
lift_pink_block_drawer
rotate_pink_block_right
lift_red_block_drawer
push_blue_block right

82.6%
98.2%
87.9%
26.9%
89.7%
96.9%
68.1%
100.0%
86.2%
93.1%
87.0%
94.4%
96.6%
87.1%
91.0%
80.3%
64.9%
59.7%
87.1%
87.2%
97.3%
91.9%
84.6%
93.0%
93.0%
55.4%
91.2%
85.2%
100.0%
90.2%
85.7%
63.5%
93.3%
48.4%

RoboTron-Mani Success Rates on Various Tasks in

CALVIN [43].



Task Success Rate

assembly-v2 100%

basketball-v2 100%

bin-picking-v2 70%

box-close-v2 85%

button-press-topdown-v2 100%

button-press-topdown-wall-v2 ~ 100%

button-press-v2 80%

button-press-wall-v2 85%

coffee-button-v2 90%

coffee-pull-v2 40%

coffee-push-v2 65%

dial-turn-v2 100%

disassemble-v2 80%

door-close-v2 100%

door-lock-v2 100%

door-open-v2 100%

door-unlock-v2 100%

hand-insert-v2 55%

drawer-close-v2 100%

drawer-open-v2 100%

faucet-open-v2 0%

faucet-close-v2 90% Method Pick Coke Can  Move Near  Open/ Close Drawer ~ Overall

hammer-v2 15% RT-1-X 0.567 0.317 0.597 0.534

handle-press-side-v2 100% RT-2-X(55B) 0.787 0.779 0.250 0.607

handle-press-v2 100% 8cto-Base 0.170 0.042 0.227 0.169

penVLA 0.163 0.462 0.356 0.248

handle-pull-side-v2 25% HPTI[1] 0.60 0.24 0.23 0.35

handle-pull-v2 100% RoboTron-Mani 0.63 0.64 0.525 0.60

Lee\;:-ri;psl::lrlt_-\;iz de-v2 222 Table 10. SIMPLER evaluation results of different methods on RT-
. 1. The “Overall” column reports the success rate averaged across

pick-place-wall-v2 95%

pick-out-of-hole-v2 15% the sub-tasks of all task types.

reach-v2 75%

push-back-v2 100%

push-v2 90%

pick-place-v2 100%

plate-slide-v2 100%

plate-slide-side-v2 100%

plate-slide-back-v2 100%

plate-slide-back-side-v2 100%

peg-unplug-side-v2 25%

soccer-v2 20%

stick-push-v2 100%

stick-pull-v2 85%

push-wall-v2 100%

reach-wall-v2 85%

shelf-place-v2 45%

sweep-into-v2 95%

sweep-v2 100%

window-open-v2 60%

window-close-v2 100%

Table 9. RoboTron-Mani Success Rates on Various Tasks in Meta-
World [68]



Task Index Success Rate | Task Index Success Rate

0 100% 45 80%
1 85% 46 90%
2 95% 47 100%
3 95% 48 95%
4 85% 49 95%
5 60% 50 95%
6 100% 51 35%
7 100% 52 95%
8 90% 53 100%
9 80% 54 95%
10 100% 55 100%
11 95% 56 100%
12 90% 57 100%
13 75% 58 100%
14 95% 59 90%
15 95% 60 100%
16 100% 61 95%
17 95% 62 95%
18 95% 63 100%
19 100% 64 80%
20 100% 65 100%
21 85% 66 100%
22 90% 67 100%
23 70% 68 95%
24 100% 69 95%
25 100% 70 100%
26 90% 71 100%
27 75% 72 95%
28 100% 73 70%
29 100% 74 90%
30 100% 75 70%
31 100% 76 100%
32 50% 71 100%
33 85% 78 85%
34 100% 79 100%
35 85% 80 90%
36 90% 81 60%
37 100% 82 100%
38 80% 83 95%
39 85% 84 90%
40 95% 85 95%
41 100% 86 90%
42 100% 87 100%
43 100% 88 100%
44 95% 89 95%

Table 11. RoboTron-Mani Success Rates on Various Tasks in
Libero [36].



