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Supplementary Material

In this supplementary material, we first provide addi-
tional analyses to elaborate on concepts introduced in the
main paper. Specifically: (1) Suppl. A details why Turbo-
Clique employs a stringent compatibility threshold. (1.1)
Suppl. A.1 elaborates on pairwise compatibility-induced sta-
bility. (1.2) Suppl. A.2 and Suppl. A.3 illustrate the applica-
tion of pairwise compatibility-induced stability in the design
of TurboClique through experimental validation and geo-
metric intuition, respectively. (2) Suppl. B offers a detailed
numerical interpretation of the SC2 scores. (3) Suppl. C
proves the Unique Assignment Property of TurboClique in
the O2Graph. (4) Suppl. D presents the Tensor-style pseudo-
code for PGS.

Next, we introduce foundational concepts to enhance the
completeness. (1) Suppl. E.1 defines the concepts of clique
and maximal clique. (2) Suppl. E.2 provides the derivation
of the variance of the Least Squares Estimator.

Finally, we present additional experiments. (1) Suppl. F.1
provides a deep understanding experiment for searched Tur-
boClique (2) Suppl. F.3 provides the runtime of TurboReg
components. (3) Suppl. F.4 analyzes the failure cases of Tur-
boReg. (4) Suppl. F.5 visualizes qualitative examples not
included in the main paper.

A. Why TurboClique using Stringent Compati-
bility Threshold ?

In this section, we introduce the rationale behind the strin-
gent compatibility threshold employed by TurboClique. We
first elaborate on the concept of pairwise compatibility-
induced stability in Suppl. A.1. Furthermore, we demonstrate
how this stability principle is incorporated into the design of
TurboClique through experimental validation in Suppl. A.2
and geometric intuition in Suppl. A.3.

A.1. Pairwise Compatibility-induced Stability
This section explains pairwise compatibility-induced stabil-
ity by analyzing the relationship between matching noise
variance and the spatial compatibility constraint. The anal-
ysis demonstrates that smaller τ values enhance pairwise
compatibility-induced stability, enabling 3-cliques to achieve
stability comparable to larger cliques (e.g., maximal cliques).
We also provide experimental and intuitive analyses for a
comprehensive understanding.

Given a matching set M = {mi}Ni=1, where, mi =
(xi,yi) and xi,yi ∈ R3 represent source and target key-
points, respectively, the matching relationship is defined
as yi = T(xi) + ri. Here, T(·) denotes the rigid trans-
formation (including rotation and translation), and ri rep-

resents noise in the matching process. We assume ri ∼
N (0, σ2I3×3), indicating that the noise follows an inde-
pendent, zero-mean, isotropic Gaussian distribution with
variance σ2.

In the absence of constraints between matches, the distri-
bution of ri remains entirely random, with noise uniformly
distributed across three-dimensional space. We then analyze
the influence of introducing spatial compatibility constraints,
defined as follows for any mi ∈M:∣∣∥yi − yj∥ − ∥xi − xj∥

∣∣ ≤ τ, (1)

where τ ≥ 0 represents the compatibility threshold, lim-
iting the distance difference between matching pairs. This
constraint reduces the randomness of ri, narrows the noise
distribution, and yields an effective variance σ2

eff that is po-
tentially smaller than the initial variance σ2.

For a precise analysis, we define dij = xi−xj and eij =
ri−rj . Leveraging the distance-preserving property of rigid
transformations, which ensures that ∥T(xi) − T(xj)∥ =
∥xi − xj∥, we rewrite Eq. (1) as:

|∥dij + eij∥ − ∥dij∥| ≤ τ. (2)

Initially, eij follows a Gaussian distributionN (0, 2σ2I3×3).
However, the constraint in Eq. (2) limits the norm of eij , ef-
fectively truncating the joint distribution of ri and rj . Conse-
quently, the variance of this truncated distribution is smaller
than that of the original, resulting in an effective variance
σ2

eff < σ2. Specifically, Eq. (2) enforces ∥dij + eij∥ to lie
within the interval [∥dij∥ − τ, ∥dij∥ + τ ]. As τ decreases,
this interval narrows, further restricting the possible values
of eij . In the limit where τ → 0, the constraint reduces
to ∥dij + eij∥ = ∥dij∥, which geometrically implies that
eij → 0. This condition suggests that ri ≈ rj , and given
the zero-mean property of ri, it follows that ri → 0. As a
result, the noise distribution approaches a Dirac delta func-
tion, with σ2

eff → 0. Thus, smaller values of τ progressively
reduce σ2

eff, ultimately approaching zero.
In summary, spatial compatibility reduces the randomness

of ri, with its variance decreasing to zero as τ diminishes.

A.2. Experimental Validation
The analysis above suggests that as τ approaches zero, pair-
wise compatibility-induced stability increases, compensating
for the loss of data scaling stability in TurboClique due to
a reduced number of matches. Consequently, rigid transfor-
mations derived from 3-cliques exhibit minimal differences
compared to those from larger cliques, supporting Turbo-
Clique’s preference for a small τ . This section empirically
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Figure 1. Distribution of discrepancies between transformations
estimated from 3-clique and 10-clique configurations in terms of
rotation and translation.

Figure 2. Demonstration of matches when τ = 0.

confirms this inference by demonstrating that transformation
discrepancies between 3-cliques and 10-cliques decrease
as τ diminishes. Specifically, we assess transformation dis-
crepancies between estimates derived from 3-cliques and
10-cliques on the 3DMatch+FPFH dataset across increasing
τ values. The procedure is outlined as follows:
1. Set τ ∈ {1 cm, 10 cm, 50 cm, 100 cm} to construct com-

patibility graph G;
2. Extract all 10-cliques from G and compute multiple trans-

formations T(10) = (R(10), t(10));
3. For each 10-clique, estimate transformations
{T(3)

k }Kk=1 = {(R(3)
k , t

(3)
k )} from all K =

(
10
3

)
3-clique subsets;

4. Calculate rotation and translation errors:

∆Rk = arccos

(
tr(R(10)⊤R

(3)
k )− 1

2

)
, (3)

∆tk = ∥t(10) − t
(3)
k ∥2; (4)

5. Visualize error distributions across τ values in Fig. 1.
Results show negligible discrepancies at τ = 1 cm

(< 0.1◦ rotation, < 0.5 mm translation), with errors ris-
ing proportionally to τ . This confirms that 3-cliques achieve
accuracy comparable to larger cliques under tight thresholds,
while significantly reducing computational complexity.

A.3. Geometric Intuition
We further provide an intuitive analysis by examining the
extreme case where τ = 0. Three matches {m1,m2,m3},

as shown in Fig. 2, form congruent triangles△x1x2x3 and
△y1y2y3, uniquely determining the rigid transformation
T(3). Introducing a fourth match m4 that satisfies τ = 0
compatibility with the initial trio results in a transformation
T(4) identical to T(3), as m4 must conform to the existing
geometric constraints. This principle applies to additional
matches: any correspondence satisfying τ = 0 preserves
the original transformation. Thus, under ideal compatibility
conditions (i.e., τ = 0), 3-cliques fully encapsulate transfor-
mation information, rendering larger cliques unnecessary. In
practice, however, a small, non-zero τ is adopted to account
for sensor noise and matching imperfections, justifying our
use of a modest compatibility threshold.

B. Numerical Interpretation of SC² Scores
In Sec. 3.3 of the main paper, we claim that SC2 scores
quantify TurboClique density. We now provide a brief ex-
planation. The SC2 score between matches mi and mj is
defined as:

Ĝij = Gij

N∑
k=1

Gik ·Gjk, (5)

where Gij ∈ {0, 1} indicates spatial compatibility between
mi and mj . Two observations are as follows:

• If Gij = 0, then Ĝij = 0, indicating no edge be-
tween mi and mj . Consequently, the number of Tur-
boCliques around (mi,mj) is zero.

• If Gij = 1, the summation counts nodes k where
Gik = Gjk = 1. Each such k forms a TurboClique
{mi,mj ,mk}, making Ĝij equal to the number of
TurboCliques containing the edge (i, j).

Combining these cases, the value of Ĝij represents the
number of TurboCliques associated with mi and mj .

C. Unique Assignment Property of Turbo-
Clique

In this section, we demonstrate how the O2Graph eliminates
the redundant detection of TurboCliques by proving that
each TurboClique can be uniquely assigned to a single pivot.

Given a TurboClique around πz , denoeted as TC(πz) =
{mz1 ,mz2 ,mz3}, where z1 < z2 < z3 (without loss of
generality), the O2Graph defines edge directions from lower-
indexed to higher-indexed nodes. This implies:

• N (mz1) = {mz2 ,mz3},
• N (mz2) = {mz3},
• N (mz3) = ∅,

where N (·) denotes the set of neighboring nodes in the
compatibility graph.

Next, we analyze three possible pivot cases to show that
only one case detects TC(πz):



Algorithm 1: Pivot-Guided Search Algorithm
(Tensor-style)

1 Input: Weighted graph: Ḡ ∈ RN×N ; number of
pivots K1 ∈ N+; number of TurboCliques for each
pivot K2 ∈ N+

2 Output: TurboClique set C ∈ {1, . . . , N}K1K2×3

3 % Select top-K1 edges as pivots
4 P← TopKEdges(Ḡ,K1)
5 % Common neighbors (mask) for each pivot
6 M← (Ḡ[P[:, 0]] > 0)⊙ (Ḡ[P[:, 1]] > 0)
7 % TurboClique weights for each TurboClique
8 S← Ḡ[P[:, 0],P[:, 1]] + (Ḡ[P[:, 0]] + Ḡ[P[:, 1]])
9 S′ ← S⊙M

10 % Top-K2 TurboCliques for each pivot
11 Z← ColumnTopK(S′,K2)
12 % Assemble TurboCliques: (pivots, third matches)
13 C← zeros(K1 ·K2, 3)
14 for i← 0 to K2 do
15 % Assign first two matches
16 C[(i×K1) : ((i+ 1)×K1), : 2]← P
17 % Assign third match
18 C[(i×K1) : ((i+ 1)×K1), 2]← Z

19 end
20 return C

• Case 1: πz = (mz2 ,mz3): Since mz1 /∈ N (mz2) and
mz1 /∈ N (mz3), this pivot cannot detect TC(πz).

• Case 2: πz = (mz1 ,mz3): Since mz2 /∈ N (mz3),
this pivot cannot form TC(πz) with mz2 .

• Case 3: πz = (mz1 ,mz2): Here, mz3 ∈ N (mz1) ∩
N (mz2), enabling the formation of TC(πz).

Since any three matches can form at most the three above
pivot configurations, and only the pivot consisting of the two
lowest-indexed nodes detects a TurboClique, this proves that
each TurboClique is uniquely assigned to a single pivot.

D. Tensor-style Pseudo-code of PGS

We present the Tensor-style pseudo-code of the PGS algo-
rithm in Algorithm 1.

E. Supporting Theorems and Derivations

To ensure the completeness of this paper, this section pro-
vides foundational theorems and derivations that support the
main analysis.

E.1. Definition of Clique and Maximal Clique

Figure Fig. 3 depicts a graph with 7 vertices, denoted as G.
A clique is a complete subgraph C ⊆ G where every pair of
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Figure 3. Undirected graph for demonstration.

distinct vertices is adjacent:

∀u,v ∈ C, (u,v) ∈ E(G), (6)

where E(G) represents the edge set of G. For example, the
vertices {1, 3, 5} are fully connected, forming a 3-clique.
Similarly, {2, 4, 6, 7} constitutes a 4-clique. For example,
the vertices {1, 3, 5} are fully connected, forming a 3-clique.
Similarly, {2, 4, 6, 7} forms a 4-clique.

The maximal clique is defined as a clique that cannot be
extended by including any adjacent vertex:

∄w ∈ G \ C such that C ∪ {w} forms a clique. (7)

For instance, the 5-clique {1, 2, 3, 4, 5} is maximal because
the remaining vertices {6, 7} cannot be added to form a
larger clique. Similarly, {2, 4, 6, 7} is a maximal 4-clique.

E.2. Variance of LS Estimator
This section derives the variance of the least squares (LS) es-
timator in a standard linear regression framework. Consider
the linear regression model:

Y = Xβ + ϵ, (8)

where Y is the response variable, X is the design matrix, β
is the coefficient vector, and ϵ is the error term. We assume
the errors satisfy:

E[ϵ|X] = 0, Var(ϵ|X) = σ2In. (9)

The ordinary least squares (OLS) estimator for β is:

β̂ = (X ′X)−1X ′Y. (10)

The variance of β̂ is computed as:

Var(β̂|X) = Var
(
(X ′X)−1X ′Y | X

)
. (11)

Substituting Y = Xβ + ϵ and applying variance properties:

Var(β̂|X) = (X ′X)−1X ′Var(ϵ|X)X(X ′X)−1. (12)

Given Var(ϵ|X) = σ2In, this simplifies to:

Var(β̂|X) = σ2(X ′X)−1. (13)

This result indicates that the variance of the LS estimator
depends on the noise variance σ2 and the design matrix X .
Notably, a smaller σ2 or a larger sample size (reflected in X)
reduces the variance.



Metrics RR (%) TQRR (%) ICRR (%)
TKRR (%)

@2 @3 @5 @50

FP
FH

IN 84.10 93.72 70.48 85.97 86.50 87.77 92.38
MSE 82.99 99.94 68.90 83.77 84.43 85.34 90.04
MAE 83.43 99.94 69.26 84.22 84.87 85.79 90.51

FC
G

F IN 93.59 97.66 90.24 94.06 94.45 94.91 96.66
MSE 93.47 99.94 89.73 93.73 93.86 94.24 95.86
MAE 93.35 99.94 89.84 93.85 93.98 94.37 95.98

Table 1. Ranking-based Registration Recall Evaluation on the
3DMatch Dataset. (1) TQRR evaluates whether the best trans-
formation outperforms the ground truth transformation under the
corresponding metrics. (2) ICRR assesses whether the best Turbo-
Clique hypothesis consists of three inliers. (3) TKRR determines
whether the top-K hypotheses include a successfully registered
rigid transformation.

F. More Experiments

F.1. Understanding the Searched TurboCliques
To better understand TurboReg, we propose three ranking-
based registration recall metrics to analyze the K1K2 Tur-
boCliques identified by PGS. Specifically, we first rank the
K1K2 transformation hypotheses based on inlier number
(IN), mean absolute error (MAE), and mean squared error
(MSE). The three metrics are defined as follows: (1) Transfor-
mation Quality Registration Recall (TQRR): The proportion
of cases where the top-1 hypothesis achieves a score equal to
or exceeding the ground-truth transformation. Inlier-Clique
Registration Recall (ICRR): The proportion of cases where
the top-1 hypothesis clique contains only inliers. (2) Top-K
Hypothesis Registration Recall (TKRR): The proportion of
cases where at least one valid transformation exists among
the top-K hypotheses. Results are summarized in Table 1.

Discussion of TQRR. From Tab. 1, TQRR consistently ex-
ceeds RR by significant margins. For instance, when ranked
by IN, TQRR surpasses RR by 9.62%, indicating that erro-
neous rigid transformations with higher consistency scores
than the ground truth are frequently selected during model
estimation. This suggests that the ground-truth transforma-
tion does not always align with the maximum consistency
assumption, potentially due to: (1) Sampling Error: Dis-
crete keypoint sampling or insufficient sampling density
causing deviations between the ground truth and maximum
consistency transformations. (2) Scene Ambiguity: Repeti-
tive structures (e.g., identical objects) leading to ambiguous
alignments.

Notably, TurboReg achieves 99.94% (1622/1623) TQRR
under MAE and MSE metrics, demonstrating its ability to
prioritize highly consistent hypotheses over the ground truth
in nearly all cases.

Discussion of ICRR. Tab. 1 reveals that ICRR is consistently
lower than RR, indicating that many cliques containing out-
liers still produce successful registrations. These findings

Device Methods O2Graph Construction PGS Model Estimation Total

CPU
Ours (0.5) 276.05 (88.33%) 30.33 (9.70%) 6.13 (1.96%) 312.50
Ours (2K) 277.26 (67.02%) 73.26 (17.71%) 63.17 (15.27%) 413.68

GPU
Ours (0.5) 0.04 (0.25%) 11.36 (71.71%) 4.44 (28.05%) 15.84
Ours (2K) 0.05 (0.25%) 11.88 (60.80%) 7.61 (38.95%) 19.54

Table 2. Average consumed time (ms) per point cloud pair on the
3DMatch+FPFH dataset across CPU and GPU implementations.

3DMatch 3DLoMatch
#hypotheses FPFH FCGF FPFH FCGF

3DMAC Ours 3DMAC Ours 3DMAC Ours 3DMAC Ours
100 50.67 78.39 61.92 90.67 12.22 23.19 30.47 52.11
200 89.27 151.12 119.20 178.99 17.59 37.34 55.57 97.87
500 162.41 346.03 269.06 429.54 23.32 45.43 109.32 206.49

1000 217.32 598.01 456.18 777.29 26.02 63.33 156.11 316.24
2000 254.13 770.39 669.32 1034.39 29.31 78.34 202.12 362.05

Table 3. Comparison of correct hypothesis counts

demonstrate that even cliques with outliers can yield correct
registrations.

Discussion of TKRR. As K increases, TKRR improves
significantly and eventually surpasses RR (Table 1). This
indicates that the correct transformation is more likely to
reside among the top-K transformations rather than exclu-
sively in the top-1. However, conventional methods typically
select the top-1 transformation based on ranking, implying
that our model selection strategy may impose performance
limitations. This reliance on top-1 selection often overlooks
potentially correct transformations within the broader top-K
set, highlighting a key bottleneck in registration.

Summary. In summary, we demonstrate that TurboReg ex-
cels at identifying TurboCliques with a high inlier ratio,
characterized by high IN and lower MSE/MAE. However,
the correct transformation may not always be selected due
to the inherent limitation of choosing only the top candidate,
which constrains the overall performance of the registration
algorithm despite its ability to generate high-scoring cliques.

F.2. Comparison with MAC hypotheses.
Following [1], we evaluate the quality of the generated hy-
potheses by comparing those produced by MAC and Tur-
boReg against the ground truth transformation. The results,
shown in Tab. 3, indicate that under the same number of
hypotheses, our method yields a higher proportion of correct
hypotheses.

F.3. Runtime of TurboReg Components
This experiment investigates the temporal characteristics of
TurboReg modules on the 3DMatch+FPFH dataset. Average
execution times (ms) for CPU and GPU implementations are
presented in Tab. 2.

Significant differences exist between CPU and GPU
implementations. Focusing first on the CPU variant, the
O2Graph Construction module dominates the processing
time under both 0.5K and 2K pivot configurations. The PGS
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Figure 4. Insufficient Consensus Correspondences. Red indicates lower IN values, while green denotes higher IN values.
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Figure 5. Larger Consensus Set with Small Errors. Red indicates lower IN values, while green denotes higher IN values.

and Model Estimation modules exhibit a positive correlation
between K1 and runtime, since an increase in K1 leads to a
higher number of TurboCliques.

In GPU implementations, the O2Graph Construction time
decreases drastically (e.g., merely 0.25% of total runtime)
due to parallel computation capabilities. Furthermore, the
parallelized TurboClique search enables the PGS module to
maintain near-constant execution time, resulting in approx-
imately 12 ms for both K1 = 500 and 2000. Conversely,
the Model Estimation module demonstrates a linear scal-
ing trend with K1, as additional TurboCliques necessitate
incremental transformation estimations.

F.4. Failure Case Analysis

In this section, we analyze the failure cases of TurboReg. We
first review the definition of successful registration: regis-
tration is successful if the error between the estimated rigid

transformation and the ground truth rigid transformation falls
below specific thresholds. For 3DMatch and 3DLoMatch, the
requirements are RE ≤ 15◦ and TE ≤ 30 cm. For the KITTI
dataset, the requirements are RE ≤ 5◦ and TE ≤ 60 cm.

Next, we note that the estimated rigid transformation is
selected based on the inlier number (IN), under the assump-
tion that the correct rigid transformation corresponds to the
maximum consensus set.

We classify instances that do not meet the successful
registration criteria into three categories:
1. Insufficient Consensus Correspondences: TurboReg

fails to identify a sufficiently large set of consensus corre-
spondences. This occurs in scenarios with extremely low
overlap or strong symmetry, as illustrated in Fig. 4.

2. Larger Consensus Set but Incorrect Transformation:
The algorithm identifies a larger IN than that of the
ground truth transformation, yet the result remains in-
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Figure 6. Larger Consensus Set with Large Errors. Red indicates lower IN values, while green denotes higher IN values.

correct. This contradicts the maximum consensus set
assumption. We categorize this scenario into two sub-
categories:
(a) Small Errors: The estimated rigid transformation

closely approximates the true rigid transformation,
suggesting that registration is feasible, albeit with
slightly larger errors. Due to the limited number of
correct matches, the result is sensitive to noise, as
illustrated in Fig. 5.

(b) Large Errors: The algorithm identifies a rigid trans-
formation with a larger inlier set that still aligns visu-
ally, as shown in Fig. 6. This may occur because the
matching pairs conform to an underlying geometric
structure.

F.5. Qualitative Visualizations
Figs. 7-9 illustrate qualitative visualizations of challenging
registration pairs. 3DMAC and SC2-PCR fail to achieve
registration, whereas TurboReg successfully completes the
registration task.
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Figure 7. Qualitative Comparison on 3DMatch. Red and green represent failed and successful registrations, respectively.
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Figure 8. Qualitative Comparison on 3DLoMatch. Red and green represent failed and successful registrations, respectively.
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Figure 9. Qualitative comparison on KITTI. Red and green represent failed and successful registrations, respectively.
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