3D-MOOD: Lifting 2D to 3D for Monocular Open-Set Object Detection

Supplementary Material

This supplementary material elaborates more details of
our main paper. In Sec. A, we illustrate how the proposed
canonical image space can reduce the required GPU re-
source for training and how it helps the model learn bet-
ter prior geometry. In Sec. B, we compare our proposed
geometry-aware query generation to the virtual depth pro-
posed by Cube R-CNN [1]. In Sec. C, we provide further
details of our proposed open-set benchmark. We analyze
the depth estimation performance in Sec. D, backbone com-
parison in Sec. E and FPS in Sec. F, respectively. In Sec. G,
we discuss the importance of our proposed open detection
score (ODS) and compare the evaluation results in detail to
the IoU-based AP. Finally, we provide more qualitative re-
sults in Sec. H for both closed-set and open-set settings.

A. Canonical Image Space

As shown in the main paper, we compare different resiz-
ing and padding strategies for training the model. Given
the training batch size as 2, we have two training samples
having very different image ratios, e.g. [376 x 1241] and
[1920 x 1080]. The first strategy as [1] will find the shortest
edge and resize it to the desired value, e.g. 512, and conduct
the right-bottom padding to align the two samples’ resolu-
tions. This will lead to considerable padding for the portrait
image, while not change the camera intrinsic K.

The second strategy is like Grounding DINO (G-
DINO) [4], which will find the longest edge and resize it to
the desired value, e.g. 1333, and use the same right-bottom
padding to align the resolutions. This leads to consider-
able padding for the landscape image, while the padding
will also not change the camera intrinsic K. Both strate-
gies will increase the GPU usage for unnecessary padding
and lead to different image resolutions for the same sampled
image according to the paired images.

On the other hand, our proposed canonical image space
fixes the image resolutions, e.g. [800 x 1333], and will re-
size the longest or the shortest edge considering the image
ratios. As shown in Tab. 5, our methods successfully reduce
the needed GPU resources compared to the previous meth-
ods. Furthermore, we use the center padding to ensure our
image space will affect the camera intrinsic K accordingly
to unify it across not only the training and testing time but
also across datasets.

During inference time, the same camera will capture the
same image shape with the same camera intrinsics. The
previous methods will fail to align the same observation be-
tween training and inference time. We speculate that this
will hinder the model’s understanding of the relation be-

Table 5. GPU RAM Consumption. We compare the GPU re-
source usage of different training padding and resizing methods.
We show the results of training our full model using Swin-T [5]
and batch size of 2 using gradient checkpointing on a RTX 4090.

Resize ‘ Padding Image Resolutions ‘ GPU RAM (G)
Short Edge | Right-Bottom  Short Edge to 512 21
Long Edge | Right-Bottom  Long Edge to 1333 23
Ours Center 800 x 1333 17

Table 6. Comparison with Virtual Depth. We compare our
geometry-aware 3D query generation (GA) with the virtual depth
proposed by Cube R-CNN [1]. The results shows that GA con-
verge better than the virtual depth mechanism.

Method | Virtual Depth GA | AP ¢
Cube R-CNN [1] | v -] 233
Ours (Swin-T) v - 21.6
Ours (Swin-T) - v 26.8

tween intrinsics, image shape, and metric depth. On the
contrary, our canonical image space will keep the image and
intrinsic consistent. As shown in the ablation studies of the
main paper, the model benefits from the proposed canonical
image space for both closed-set and open-set settings with
even fewer GPU resource requirements for training.

B. Comparison with Virtual Depth

We compare our proposed geometry-aware 3D query gen-
eration with the virtual depth proposed in [1]. As shown in
Tab. 6, the virtual depth leads our model to converge much
slower than our proposed geometry-aware 3D query gener-
ation. We speculate that virtual depth requires much more
training time to learn universal geometry, which also leads
to underperformance.

C. Open-set Benchmark

We show more details about our proposed open-set bench-
mark and list the full classes for each datasets in Tab. 7.

C.1. Argoverse 2

Compared to other autonomous driving datasets, Argoverse
2 (AV2) [10] possesses more diverse classes. Moreover, the
resolutions of the front camera are portrait images, provid-
ing unseen cameras and domains. Those factors make AV2
a challenging dataset for benchmarking open-set monocular
3D object detection. We sample every 5 frame from the offi-
cial validation split and obtain 4806 images as the open-set



Table 7. Classes for Argoverse 2 and ScanNet. We list the base and novel categories for our proposed open-set benchmark. For ScanNet,
the bold categories are the supercategories. We further list all 168 categories of ScanNet200 settings.

Dataset

Base

Novel

Argoverse 2

regular vehicle, pedestrian, bicyclist, construction cone,
construction barrel, large vehicle, bus, truck, vehicular
trailer, bicycle, motorcycle

motorcyclist, wheeled rider, bollard, sign, stop sign, box
truck, articulated bus, mobile pedestrian crossing sign,
truck cab, school bus, wheeled device, stroller

ScanNet

cabinet (cabinet, kitchen cabinet, file cabinet, bathroom
vanity, bathroom cabinet, cabinet door, trash cabinet,
media center), bed (bed, mattress, loft bed, sofa bed,
air mattress), chair (chair, office chair, armchair, sofa
chair, folded chair, massage chair, recliner chair, rock-
ing chair), sofa (couch, sofa), table (table, coffee table,
end table, dining table, folded table, round table, side
table, air hockey table), door (door, doorframe, bath-
room stall door, closet door, mirror door, glass door, slid-
ing door, closet doorframe), window, picture (picture,
poster, painting), counter (kitchen counter, counter, bath-
room counter), desk, curtain, refrigerator (refrigerator,
mini fridge, cooler), toilet (toilet, urinal), sink, bathtub

bookshelf, shower curtain, other furniture (trash
can, radiator, recycling bin, ottoman, bench, tv stand,
wardrobe, trash bin, seat, closet, ladder, piano, water
cooler, stand, washing machine, rack, wardrobe , clothes
dryer, ironing board, keyboard piano, music stand, furni-
ture, crate, drawer, footrest, piano bench, foosball table,
footstool, compost bin, tripod, treadmill, chest, folded
ladder, drying rack, pool table, heater, toolbox, beanbag
chair, dollhouse, ping pong table, clothing rack, podium,
luggage stand, rack stand, futon, book rack, workbench,
easel, headboard, display rack, crib, bedframe, bunk bed,
magazine rack, furnace, stepladder, baby changing sta-
tion, flower stand, display)

ScanNet200

chair, table, door, couch, cabinet, shelf, desk, office chair, bed, pillow, sink, picture, window, toilet, bookshelf,
monitor, curtain, book, armchair, coffee table, box, refrigerator, lamp, kitchen cabinet, towel, clothes, tv, nightstand,
counter, dresser, stool, plant, bathtub, end table, dining table, keyboard, bag, backpack, toilet paper, printer, tv stand,
whiteboard, blanket, shower curtain, trash can, closet, stairs, microwave, stove, shoe, computer tower, bottle, bin,
ottoman, bench, board, washing machine, mirror, copier, basket, sofa chair, file cabinet, fan, laptop, shower, paper,
person, paper towel dispenser, oven, blinds, rack, plate, blackboard, piano, suitcase, rail, radiator, recycling bin,
container, wardrobe, soap dispenser, telephone, bucket, clock, stand, light, laundry basket, pipe, clothes dryer, guitar,
toilet paper holder, seat, speaker, column, ladder, cup, jacket, storage bin, coffee maker, dishwasher, paper towel
roll, machine, mat, windowsill, bar, bulletin board, ironing board, fireplace, soap dish, kitchen counter, doorframe,
toilet paper dispenser, mini fridge, fire extinguisher, ball, hat, shower curtain rod, water cooler, paper cutter, tray,
pillar, ledge, toaster oven, mouse, toilet seat cover dispenser, cart, scale, tissue box, light switch, crate, power outlet,
decoration, sign, projector, closet door, vacuum cleaner, headphones, dish rack, broom, range hood, hair dryer, water
bottle, vent, mailbox, bowl, paper bag, projector screen, divider, laundry detergent, bathroom counter, stick, bathroom
vanity, closet wall, laundry hamper, bathroom stall door, ceiling light, trash bin, dumbbell, stair rail, tube, bathroom

cabinet, coffee kettle, shower head, case of water bottles, power strip, calendar, poster, mattress

testing set. Among the official 26 classes, 23 appeared in
the testing set, which contains 11 base and 12 novel classes.

C.2. ScanNet

ScanNet [2] provides diverse indoor scenes with 18 super-
categories as shown in Tab. 7. We uniformly sample max-
imum 20 frames from each scan in the official ScanNet
validation splits and obtain total 6240 images as open-set
testing set. Given that 15 supercategories are seen in the
Omni3D training set, this benchmark still allows us to eval-
uate domain generalization, where Tab. 4 of the main paper
indicates issues of previous works. Furthermore, in the rest
3 novel classes, the supercategory other furniture requires
models to detect various types of furniture.

To further test 3D-MOOD, we extend ScanNet using the
ScanNet200 setting, which has 168 thing classes appeared
in the testing set. As shown in Tab. 8, 3D-MOOD can still
achieve best performance given more diverse classes.

Table 8. ScanNet200 Results. 3D-MOOD achieves SOTA results
given diverse novel categories in unseen scenes.

Method | APJSt+  mATE| mASE| mAOE| ODS1
Cube R-CNN [1] 2.1 0.962 0.970 0.985 2.5
OVM3D-Det [3] 3.1 0.957 0.973 0.946 3.6
Ours (Swin-B) 6.2 0.811 0.835 0.799 12.4

D. Metric Monocular Depth Estimation

Because auxiliary depth estimation (ADE) is only used to
help with 3D object detection, we evaluated its effective-
ness in this regard. As shown in Tab. 4 of our paper, ADE
improves the closed set AP by 0.7, but reduces the per-
formance for unseen scenes, indicating that ADE can only
help for known scenes. We further evaluate our depth qual-
ity on the KITTI Eigen-split test set, where UniDepth [8]
achieves 4.21% absolute relative error, Metric3Dv2 [11] has



Table 9. Backbone comparison. We ablate the choice of different
model backbones. All experiments are trained with 12 epochs.

Backbone | Parameters | AP;}I)‘““ 0
DLA-34[12] 15M 24.9
Swin-Transformer (Tiny) [5] 290M 26.8
Swin-Transformer (Base) [5] 88M 28.2
ConvNeXt-B [6] 8OM 284

Table 10. Comparison between different matching criteria for
evaluation. The same detection results will have a huge AP dif-
ference when using different matching settings.

Matching ‘ Pedestrian

IoU 7.4 0.5 0.5 2.0
Distance 26.2 6.5 9.4 24.2

Construction cone ‘ Monitor  Door

4.4%, and 3D-MOOQOD obtains 9.1%. We believe it is due to
limited training data, different training objectives, and the
model backbones [5, 7].

E. Backbone Comparison

As shown in Tab. 9, Swin-B works equally well with
ConvNeXt-B, and 3D-MOOD is comparable to Cube R-
CNN and Uni-MODE using the same backbone, but with
much shorter training. This shows effectiveness of our pro-
posed designs rather than the backbone [7].

F. Inference Time

We compare the FPS on KITTI using an RTX 4090, and
Cube R-CNN (DLA-34) can have 68 FPS while 3D-MOOD
(Swin-T) can achieve 17 FPS. As a reference from the pa-
per, Uni-MODE can obtain 21 FPS on a single A100.

G. Open Detection Score (ODS)

Compared to point-cloud-based 3D object detectors, using
a single image to estimate 3D objects requires the networks
to predict metric depth, while the scales in depth are known
in the point cloud. This extra challenge leads the monocular
methods to fail to match the ground truth using IoU-based
matching because of several centimeter error in depth, espe-
cially for the small or thin objects in the open-set settings.

To have a more suitable evaluation metric for monoc-
ular 3D object detection, we use the 3D Euclidean dis-
tance between prediction and GT as the matching criterion.
With the dynamic matching threshold, e.g. radius of the GT
3D boxes, AP4s' can be used for both indoor and outdoor
scenes. As shown in Tab. 10, the same detection results on
Argoverse 2 [10] and ScanNet [2] will have large AP differ-
ences depending on the matching criterion.
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Figure 6. Comparison with Gemini 2. We qualitatively compare
with Gemini 2 given the novel classes.

We also propose the normalized true positive errors
(TPE) to further analyze the matched prediction. First, we
compute the 3D Euclidean distance between prediction and
GT, and we normalize the distance by the matching crite-
rion as the translation error (TE). Second, we compute the
IoU, i.e. IoUsp, between prediction and GT after aligning
the 3D centers and orientation and use 1 —IoUsp to measure
the scale error (SE). Finally, we compute the SO3 relative
angle between the prediction and GT normalized by 7 as
the orientation error (OE). We average the TP errors across
classes over different recall thresholds to get mATE, mASE,
and mAOE. Using AP;};S‘ with the proposed normalized true
positive errors to get ODS can provide a better matching
criterion for 3D monocular object detection and still eval-
uate the localization, orientation, and dimension estimation
at the same time.

H. Qualitative Results

As shown in Fig. 6, we qualitatively compared our method
with the closed-source Gemini 2 [9] beta functionality in 3D
object detection, where 3D-MOOD provides more accurate
localization. We provide more qualitative results in Fig. 7
for the open-set settings and Fig. 8 for the closed-set set-
tings. We use the score threshold as 0.1 with class-agnostic
nonmaximum suppression for better visualization.
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