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In this supplementary material, we provide a more de-
tailed illustration and evaluation of our proposed AR-VRM.
We present the details of real robot experiments in Section 1
to demonstrate the generalization capabilities of our AR-
VRM. In Section 2, we present additional ablation studies
and analysis, including the impact of various video retrieval
approaches, the effectiveness of the number of retrieved
videos, the effectiveness of different types of keypoint usage,
and the inference time of DP and RAP. In Section 3, we
outline further implementation details of AR-VRM, cover-
ing aspects such as the pretraining and fine-tuning datasets,
as well as other experimental settings. In Section 4, we
showcase additional qualitative examples.

1. Detials of Real Robot Experiment
To validate AR-VRM’s effectiveness in real-world applica-
tions, we implemented physical experiments focusing on
two key tasks: object transportation and articulated object
manipulation.

Object Transportation Our experimental setup involved a
straightforward arrangement consisting of a plate containing
three objects: an orange, an apple, and a green jujube. We
compiled a total of 1200 demonstrations, with each demon-
stration illustrating the movement of a single object. We
evaluated the performance of AR-VRM across three distinct
experimental settings: 1. Seen Objects. In this setting, the
robot was tasked with transporting the three objects observed
during training: an orange, an apple, and a green jujube. In
addition to evaluating the robot in a scene identical to the
training environment (containing only these three objects),
we further assessed its robustness in two unseen, disturbance-
prone scenes. In the first disturbed scene, distractor objects
— a tomato, a corn, and a yellow peach — were added along-
side the original three objects. In the second disturbed scene,
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the background was altered by introducing a wooden board
and a bowl. These additional tests allowed us to measure
AR-VRM’s ability to handle environmental disturbances
effectively. 2. Unseen Instances. This setting aimed to
evaluate AR-VRM’s generalization to unseen instances of
the trained object categories. Specifically, the robot was
instructed to transport a novel set of an orange, an apple, and
a green jujube, all of which were different instances from
those in the training data. 3. Unseen Categories. Finally,
to assess AR-VRM’s capacity to generalize to entirely new
object categories, the robot was tasked with transporting ob-
jects belonging to unseen classes during training: a tomato
and a yellow peach.

Articulated Manipulation This experiment focused on
evaluating AR-VRM’s performance in contact-rich articu-
lated object manipulation. To this end, we selected a drawer
as the target articulated object and collected 1,400 trajec-
tories involving both opening and closing the drawer for
training purposes. AR-VRM outperformed the two baseline
methods by a significant margin. However, the model ex-
hibited two typical failure modes: (1) failing to completely
close the drawer during the closing task, and (2) failing to
engage with the drawer handle when attempting to pull it
open during the opening task. Despite these challenges,
AR-VRM demonstrated superior robustness and reliability
in articulated manipulation tasks compared to the baseline
approaches.

2. Additional Ablations Studies

In this section, we present additional ablation studies and
analysis to evaluate the effectiveness of different video re-
trieval approaches, the number of retrieved videos and the
impact of different types of keypoint usage. All the experi-
ments are conducted on CALVIN[4] dataset, and evaluated
on NVIDIA A800 GPU * 8.

1



Retrieval Approach Success rate of tasks completed in a row Avg.Len.1 2 3 4 5

No-Retrieval 0.892 0.871 0.810 0.781 0.710 4.06
Video Feature Retrieval 0.927 0.882 0.823 0.791 0.727 4.15
Text Feature Retrieval 0.940 0.901 0.830 0.800 0.732 4.20

Video+Text Feature Retrieval 0.951 0.915 0.855 0.800 0.751 4.27

Table 1. Ablation study on the design choices of video retrieval approaches.

Num. of Videos Success rate of tasks completed in a row Avg.Len. Inference Time(s)
1 2 3 4 5 per sample↓

0 0.892 0.871 0.810 0.781 0.710 4.06 2.07
1 0.912 0.879 0.820 0.789 0.723 4.12 2.31
5 0.933 0.891 0.827 0.795 0.733 4.18 3.02
10 0.951 0.915 0.855 0.800 0.751 4.27 3.54

Table 2. Ablation study on the number of the top J retrieved videos.

Effectiveness of different video retrieval approaches. In
Table 1, we show the impact of different video retrieval
approaches on the performance of success rate of tasks com-
pleted. The following conclusions can be drawn: (1) Row
1 No-Retrieval denotes only fine-tuning and reasoning with
robot data. Compared with robot-data-only fine-tuning, in-
corporating retrieved videos (no matter in what way) dur-
ing the fine-tuning and reasoning process continually leads
to an improvement in success rates. Notably, when us-
ing Video+Text Retrieval (row4), optimal performance is
achieved(a gain of +0.21 on Avg. Len.). (2) Compared to
using video retrieval alone (row2, Video Feature Retrieval),
relying solely on text retrieval (row3, Text Feature Retrieval)
brings greater benefits (+0.05 on Avg. Len.). This may be
because videos (especially ego-centric videos) often contain
various distractions such as objects, scene changes caused by
camera shake which lead to inaccurate retrieval. Moreover,
the visual context similarity may not always represents the
relevance on actions of tasks. (3) Using both video features
and text features for retrieval achieves the best results (row4).
This may be because combining text and video features en-
sures that the retrieved videos are more relevant.

Influence of the number retrieved videos. In Table 2,
we study the impact of the number retrieved videos. It can
be observed that as the number of retrieved human videos
increases, the success rate continues to improve (from 4.06
to 4.27 on Avg. Len. with the number of videos from 0 to 20).
This indicates that human videos can provide guidance for
the current manipulation task. With more videos providing
more diversified scenes with richer semantic information,
the robustness of guidance for robot arms is strengthened,
thus resulting in better performance.

Effectiveness of different types of human keypoint usage.
Using different types of human keypoints for the guidance
of robot actions may results in different effects and per-
formance. In Table 3, we compared three methods: not
using keypoints (row1, our baseline which directly predicts
frames), using full-body keypoints (row2, Body, using [5] to
detect full-body keypoints including hands), and using hand
keypoints (row3, Hand). (1) Compared to not using key-
points, incorporating body or hand keypoints brings varying
degrees of performance improvement with different gains re-
spectively . This indicates that keypoints, compared to video
frames, focus on more critical information for action pre-
diction, reducing the interference of background and other
irrelevant information, enabling the model to concentrate
on predicting key parameters and aligning better with the
robotic arm’s prediction and operation processes. (2) The
performance of using hand keypoints is better than using full-
body keypoints. Only under the evaluation of completing 4
and 5 tasks, full-body keypoints outperform hand keypoints
by a small margin. This may be because most egocentric
videos only contain hand not full-body. To achieve optimal
performance, it may be more effective to focus on keypoints
that are specifically aligned with the robotic arm’s opera-
tional requirements, such as hand or arm-related keypoints,
rather than using all full-body keypoints. In the future, we
will explore introducing fine-grained human keypoints such
as human arms, hands and whole-bodyxxxw, or investigate
the relevance of different types of human keypoints for dif-
ferent types of robotic arms.

3. Additional Implementation Details
Datasets. We use the Ego4D dataset [2] for pretraining
and the CALVIN dataset [4] for fine-tuning. Following



Keypoints Success rate of tasks completed in a row Avg.Len.1 2 3 4 5

None 0.836 0.781 0.678 0.521 0.499 3.32
Human 0.929 0.904 0.839 0.823 0.767 4.26
Hand 0.951 0.915 0.855 0.800 0.751 4.27

Table 3. Ablation study on the design choices of keypoints.

(a) pick up the pink block

(b) open the drawer

Figure 1. Examples of action predictions.

[6], we leverage 20k expert trajectories from CALVIN, each
paired with corresponding language instruction labels. These
trajectories comprise delta XYZ positions and delta Euler
angles for arm actions, as well as binary gripper actions. For
evaluation, we utilize 1,000 unique sequential instruction
chains. In each sequence, the robot aims to sequentially
solve up to five tasks by interpreting a series of five language
instructions. The evaluation is conducted across four distinct
environments (A, B, C, and D), differentiated by desk colors
and object configurations.

Other Experimental Settings. To enable efficient
training, we pre-extract video frame features from both
datasets using the Masked Autoencoder (MAE) [3]. For
unseen instruction language generalization, we adopt
GPT-4 [1] to generate 50 synonymous instructions per
task. This is achieved using the prompt: “Generate a
synonymous sentence with new words for
[task instruction].” We follow the approach in [6],
where these synonymous instructions are randomly sampled
during evaluation. Here, [task instruction] refers
to the language instructions provided in CALVIN [4].

4. Qualitative Results

Qualitative Analysis In Figure 1a and Figure 1b, we illus-
trate the action predictions for the tasks “pick up the pink
block” and “open the drawer.” The results demonstrate that
the robot successfully interprets the language instructions
and performs the corresponding actions. Specifically, for the
task “pick up the pink block,” the robot accurately identifies
and picks up the correct object, showcasing its ability to as-
sociate the language instruction with the appropriate visual
cues. Similarly, for the task “open the drawer,” the robot
effectively follows the instruction to locate and manipulate
the specified object. These results highlight the model’s
generalization capability of object recognition and action
understanding.

Failure Case and Analysis Figure 2 illustrates an exam-
ple of an error in “in the drawer, grasp the blue block.” The
model incorrectly picked up the blue block from the cabinet
instead of from the drawer. While the model successfully
identified the target object, “blue block,” it failed to un-
derstand the operational context, “drawer.” Instead, it took
a “shortcut” by directly grabbing the blue block from the
cabinet. This issue may be related to the model’s lack of



Figure 2. A failure case: in the drawer, grasp the blue block

consideration for multi-step operations (e.g., first locating
the drawer, then locating the blue block). In future work,
we will focus on designing mechanisms to better handle
multi-step operations.
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