Appendix

e In Sec. A1, we introduce more details about the struc-
ture of SAPG and provide several examples of the object
classes and the set of prompts that are used in our exper-
iments.

* In Sec. A2, we present a more in-depth explanation
of this paper’s motivation. Specifically, we compute
statistics on the presence of symmetry cues within the
vision-language dataset, analyze the benefits of language
in symmetry detection from a theoretical perspective,
and further discuss why SAPG works better.

* In Sec. A3, we present additional ablation studies and
visualization results.

* In Sec. A4, we provide additional implementation de-
tails.

Al. Structure of text prompts

To construct language prompts for symmetry detection, we
use Grounded-SAM [44] to extract the frequent 2081 ob-
ject classes from the DENDI dataset. The full list will be
provided in the released code. Below we show the first 100
objects.

man, pole, stand, white, building, sit, table, floor, sky,
person, red, street sign, food, traffic sign, road, clock,
plate, green, attach, catch, sign, park, peak, street corner,
tree, platter, woman, car, stop sign, blue, tower, black,
play, lush, blanket, yellow, road sign, stool, bell tower,
grass, curb, tray, field, walk, stare, cloudy, pavement, ball,
child, dinning table, photo, water, boy, ride, spire, animal,
girl, drive, brown, fill, vegetable, cat, fly, footstall, room,
hand, sea, lay, cup, container, pillar, flower, city, bever-
age, motorcycle, grassy, bowl, license plate, wear, fruit,
shirt, countertop, dog, snow, plane, lamp, rail, motorbike,
home appliance, toy, stone building, electronic, bus, chair,
swinge, pizza, racket, tennis racket, rural, vase

Therefore, if we want to construct a set of prompts 7
with M = 3 prompts and each containing K = 3 words,
considering using the first 3 x 3 = 9 objects as an example,
T can be construct as follows:

T = {"man pole stand", "white building sit",

t1 to
"table floor sky"}
[ ——

t3

Note, the “frequent objects (K = 25)” row in Tab. 5 uses
the first 25 objects in the above list.

As stated in Sec. 3.2, during training, the prompts are
fixed and shared across all images. Our goal is not to search
for the optimal prompt because the searching space is ex-

Shape/Symmetry Occurrence

Word (%)

Ring 4.2718
Line 1.9806
Arc 1.5185
Ball 1.4913
Square 0.4095
Oval 0.1699
Cone 0.1606
Arrow 0.1572
Circle 0.1518
Globe 0.0892
Rectangle 0.0830
Cube 0.0776
Grid 0.0708
Pyramid 0.0685
Triangle 0.0592
Spiral 0.0503
Sphere 0.0413
Cylinder 0.0324
Hexagon 0.0277
Crescent 0.0274
Prism 0.0163
Octagon 0.0109
Checkerboard 0.0070
Helix 0.0066
Pentagon 0.0050
Ellipse 0.0035
Rhombus 0.0025
Trapezoid 0.0021
Torus 0.0007
Semicircle 0.0006
Dodecahedron 0.0005
Tetrahedron 0.0005
Icosahedron 0.0004
Parallelogram 0.0004

Table Al. Percentage of image captions containing shape/symmetry
related words in the LAION-400M dataset.

tremely large, but to show the grouping structure is helpful.
We further discuss the benefits of this design in Sec. A2.3.

A2. Discussions on the impacts of language

A2.1. Language cues about symmetry in CLIP’s
pre-training

LAION-400M [48] is a large-scale public dataset contain-
ing 400 image-caption pairs, which is potentially similar
to the dataset that CLIP was trained on. In Tab. A1, we
use GPT-4o to generate a few symmetry and shape-related
words and calculate the percentage of the occurrence of



these words within LAION-400M’s captions. We observe
that common shape-associated words such as ‘ring,” ‘line,
and ‘ball’ have appeared more frequently than complex ge-
ometric shapes such as ‘parallelogram,” ‘icosahedron,” and
‘tetrahedron.’” Nevertheless, as the dataset is very large, even
the occurrence of 0.0004% translates to the presence of 1600
image-caption pair containing complex shape concepts such
as ‘icosahedron.’ Pre-training on such diverse image-caption
pairs enables the CLIP model to learn image representations
that encode rich symmetry-related information.

A2.2. A theoretical perspective on the benefits of
language

In this subsection, we provide a theoretical perspective to
analyze the benefits of using language in the symmetry de-
tection task.

Hypothesis 1. Suppose there exists a perfect image en-
coder Ef_ which leads to the best visual features for image

img

I e REXW>XS o Z7 = Efug(I). Provided that language
contains cues about symmetry, we assume the best visual
features are offset by an additive term §*(t) that depends on

a language prompt t, plus zero-mean noise €y:
ZI:Z;—(S*(t)—l-EI, (A19)

where Eler] = 0 and §*(t) # 0 when language provides
symmetry cues.

Then we make a claim that language is beneficial under
Hypothesis 1:

Claim 2. Using language prompt t, a FiLM layer of the
form (following equation 3)

Zy, = v(2t) ©Zp + B(2), (A20)
with elementwise multiplication ©(+) and trainable linear
mappings v(-), B(+) € RY, can reduce the expected error
of visual features. Formally,

E[l1Z1: — Z7ll] < E[l1Zr — Z7[] (A21)

Proof. According to A19, the ideal additive fix to Z is

[1@Zr) =21 +67(1), (A22)

where f(-) represents a function which modulates Z; to fit
for the symmetry detection task, and f*(-) correpsondingly
represents the best fix function.

We then show FiLM can implement f*(+). Simply choose

~(z¢) = 1(all ones vector), B(z) = 0*(¢) (A23)
and apply to A20, then
Zy, =2y +0"(t) =2y +er. (A24)

GT EquiSym [51]

CLIPSym

Figure Al. Examples of when symmeries cannot be well detected.
The top row corresponds to the reflection case, and the bottom row
corresponds to the rotation case.

Hence, the language modulated visual features differ from
the best visual features Z7 by only £ rather than 6*(t) — €.
Therefore,

E[lZ1: —Z7lI’] = E[lledl?], (A25)

while

E[1Zr - Z7)?] = E[[|6"(t) — ex1|?] (A26)
=E[|ler]?] + E[|I6*(t)]?] — 2E [e16*(¢)]

(A27)
=E[llerl”] + E[I6"®)17] (A28)
> E[llex|?], (A29)

which proves
E[1Zr. - Z3ll] < E[l1Zr - Z;l] (A30)
The strict inequality holds whenever §*(¢) # 0. O

Discussion. From this proof, we see that if the language
prompt ¢ provides additional symmetry cues (6*(¢) # 0),
then a FiLM layer can “add back” these missing cues into
the visual features, reducing the overall error. Our choice
v(2zt) = 1 and S(z:) = 6*(t) is simply a constructive ex-
ample illustrating FiLM’s ability to perform an additive cor-
rection. In practice, v(-) and §(-) are gradually learned to
approximate this fix and achieve a lower error than relying
on vision features alone.

A2.3. Why does SAPG work better?

Initialization. Fig. A2 shows two illustrative examples of
the predicted symmetry heatmaps under different prompting
strategies at the initial step, i.e., before training. We can



see that using unrelated random prompts causes the model
to overly focus on most pixels in the image, while it fails
to concentrate on regions that likely exhibit symmetry. For
instance, in the second column, since "cat” or "tree" do not
exist in the original images, the model cannot find the correct
focus. In the third column, we design prompts specifically
corresponding to symmetric objects, e.g., "ice cream" and
"balloon". Although the model’s focus on symmetric ob-
jects improves compared to using unrelated random prompts,
the distinction is still not enough. In the last column, the
prompt aggregation via SAPG enables the model to correctly
concentrate on symmetric objects.

The underlying reason that this improved initialization
is beneficial because it provides the model with a strong
semantic prior derived from frequently occurring objects
which are associated with symmetry cues. As a result, the
model starts from a more informed state, reducing noise and
misalignment in the early stages of training.

Prompt grouping. In contrast to a single prompt, which
captures only one aspect of the semantic information and
may suffer from high variance due to noisy or limited cues,
aggregating multiple prompt-conditioned outputs via SAPG
acts as an ensemble. While the predictions from individual
prompts are indeed correlated due to the shared encoders,
each prompt still focuses slightly different semantic cues
about symmetry. Furthermore, since the aggregation weights
are learnable so that the model can put more weights on
prompts that are more aligned with symmetry. These factors
lead to reduced noise and more stable predictions.

Why fixed prompts rather than adaptive ones? Al-
though one may consider using adaptive prompts that vary
per image, we choose fixed prompts for several reasons.
First, since CLIP’s language encoder is trainable, as a result,
the prompt embeddings gradually evolve during training
to better capture the universal concept of symmetry. Sec-
ond, adaptive prompts can be difficult to learn and may
not generalize well. While it might be possible to identify
an optimal prompt for each training image, generating new,
adaptive prompt combinations for unseen images has the risk
of producing semantic cues that do not reliably represent
symmetry.

In the future, a possible direction is exploring image-
correlated language embeddings, which has the potential to
better represent more refined cues of symmetry based on
each image’s content.

A3. Additional results
A3.1. Limitations

Fig. Al shows some cases in the DENDI dataset when sym-
metry cannot be well detected. The top row corresponds to

"tree" "balloon"

o e e

Figure A2. Illustrative examples of predicted symmetry heatmaps
under different propmpting strategies at the initial step.

the reflection case, while the bottom row corresponds to the
rotation case. The limitations are likely due to the dataset’s
annotation quality, such as inconsistency and ambiguity. For
example, the left round object (plate) in the reflection ex-
ample is not annotated as a circle as it usually should be,
and the complicated rotation centers on the city wall in the
rotation example are not obvious. We leave the improvement
of the dataset quality for future work.

A3.2. More visualization results on DENDI dataset

Fig. A3 shows more qualitative results of reflection and rota-
tion symmetry detection on the DENDI dataset. The results
further show that CLIPSym can detect both reflection and
rotation symmetries more effectively than other baselines.

A3.3. Consistency and robustness results on SDRW
and LDRS datasets

In Tab. A2, we provide the consistency and robustness evalu-
ation results for SDRW and LDRS reflection datasets under
[—45°, 45°] uniformly distributed rotation operations. Sim-
ilar to results in Fig. 3, CLIPSym achieves the best perfor-
mance in terms of both robustness and consistency on every
dataset that we evaluated.

SDRW LDRS Mixed

Method Rob.t Cons.| Rob.t Cons.| Rob.t Cons.|

PMCNet [50] 404 0263 21.6 0.356 250 0.333
EquiSym [51] 394 0.101 205 0.112 248 0.109
CLIPSym™™* 422 0.059 273 0.061 302 0.060
CLIPSym®* 443 0.042 292 0.042 323 0.042

Table A2. Equivariance robustness and consistency evaluation
results for SDRW and LDRS reflection datasets under [—45°, 45°]
uniformly distributed rotation operations.

A3.4. Visualizations of robustness and consistency

In Fig. 3, we present heatmaps of EquiSym and CLIPSym
which take images under random rotation transformations
within [—45°, 45°] as inputs to illustrate the model’s robust-
ness and consistency. In Fig. A4, we present more results in
addition to Fig. 3.



Ground Truth PMCNet [50] EquiSym [51] CLIPSym Ground Truth EquiSym [51] CLIPSym

(a) Reflection detection results on DENDI-ref. (b) Rotation detection results on DENDI-rot.

Figure A3. Visualization of the reflection and rotation symmetry detection on the DENDI dataset.

A3.5. Ablation study on different equivariance de-
grees

In Tab. A3, we evaluate the F1-score on DENDI reflection
dataset under different degrees of group-equivariance in the



Original image GT Rotated GT EquiSym ST(I) EquiSym T(SI)

CLIPSym S (1 CLIPSym T'(St)

Figure A4. Examples of original image, ground truth, rotated ground truth, EquiSym and CLIPSym’s predicted heatmaps ST( 1) on the
rotated image and the rotated heatmap T'(S7).

design of CLIPSym decoder. Specifically, we evaluate Cly-, model’s setting, achieves the best performance.
Cs-, Cs-, C12- and Cyg-equivariant decoders. The results
show that Cg-equivariant decoder, which is the same as our



Table A3. Quantitative comparison of Fl-score (%) on the
DENDI [51] reflection dataset under different degrees of group-
equivariance.

Equiv.degrees C; Cs Cg O3 Cig
Ref. F1 653 643 665 656 658

A3.6. The best prompts structure for symmetry de-
tection

We conduct hyperparameter search over the number of
prompts M € {1,10,25,50} and the number of object
classes in each prompt K € {1,4,8,16,32}, as well as
generating different combinations of objects using different
seeds, the best prompts structure in our experiments of both
reflection and rotation symmetry detection has M = 25 and
K = 4 and is given as Tab. A4.

A3.7. Variant of non-equivariant version of CLIP-
Sym with 8x decoder channels

The only difference between CLIPSym’s the non-equivariant
version (CLIPSym""®%) and the equivariant version
CLIPSym®? is whether the upsampler is equivariant or not.
In CLIPSym"*"*4 we use regular CNN, while in CLIPSym*®%
we use G-convolution. Both models have the same number
of channel dimensions [64,32,16,1] and 3 x 3 filters. To
ensure a fair comparison to highlight the design of the equiv-
ariant module indeed helps, we also evaluate CLIPSym"*"-¢¢
with 8 times more channels in Tab. A5. Even with the sim-
ilar decoder capacity, by comparing with results in Tab. |
and Tab. 2, CLIPSym® outperforms this larger baseline,
demonstrating the benefits of the equivariant design.

Dataset DENDIRef. DENDIRot.  SDRW LDRS Mixed
Fl1 649 £+ 0.2 244 £0.1 495+03 376+02 414+02
Table A5. CLIPSym"" % with 8 times more channels.
A3.8. Comparison with an emerging result

Seo and Cho [49] recently proposed to lift 2-D features into
the camera’s 3-D space and regress a seed vertex, which
leads to a higher F1 score for rotation center detection on
DENDI. However, their pipeline is restricted to rotation
symmetry, which requires an extra 2D to 3D label conversion,
and cannot handle reflection. In contrast, CLIPSym offers a
unified solution for both reflection and rotation.

A4. Additional implementation details

Image processing. To conduct a fair comparison with other
baselines, images with different resolutions are reshaped to
417 x 417 pixels as in [51] and [50] before feeding into the
model. We preserve the aspect ratio of the original images
and pad the shorter side with zeros. During training, data
augmentations include random rotations of intervals of 90

degrees, random small rotations within [—15°,15°], and
color jittering. Since the image encoder uses ViT-B/16 [7],
the size of each image patch is 16 x 16 pixels, and the number
of patches of each side of images is M = |417/16] = 26.
During testing, we still follow the same image processing
pipeline as in training but without data augmentations to fit
the model’s input size. When calculating the metrics, zero
paddings are cropped and images are resized back to their
original sizes.

Decoder details. The decoder’s FiLM block described
in Sec. 3.1 modulates the image features conditioned on
text prompts. To conduct the element-wise multiplication
in Eq. (3), we project the text token features and image
token features to the same dimension using linear layers with
learnable parameters. The dimension of the linear layer is
set to d = 64. The Transformer module consists of Lg = 3
multi-headed attention layers, while the upsampler contains
3x G-conv. and bi-linear interpolation submodules.

Focal loss. In the a-focal loss defined in Eq. (16), we have

N g[, if Sy, =1

& oy ey A31
Iy { 1 — S, otherwise (3D
;| aifS =1

OLy = { 1—a otyherwise. (A32)

where « represents the balance factor between the symmetry
and non-symmetry pixels. We set a = 0.85 for reflection
symmetry detection and o = 0.95 for rotation since reflec-
tion axes contain more positive pixels than rotation centers.
The focusing parameter A in Eq. (16) is set to 2.0.

Other training details. We trained CLIPSym for 500
epochs with a batch size of 16 on a single NVIDIA A100
80GB GPU. A single epoch takes around 5 minutes and
the total training takes approximately 40 hours. We con-
ducted a hyperparameter search within {1073,107%,5 x
107°,107°,5 x 107,105} and found 10~ is the best ini-
tial learning rate for both reflection and rotation symmetry
detection. The difference is that reflection detection uses an
exponential decay scheduler with a decay rate of 0.1, while
rotation detection uses a constant learning rate.



Table A4.

Details of the best prompts structure for symmetry detection.

131 t2 i3 2} s
obJ1 tundra ski pole alphabet tennis racket race track
objs orangutan pass snowboard bright martini glass
objs maze take cap control windshield
objy antler sibling champagne  construction site  stone building

te tr ts to t1o
obJi damage breakfast sedan pot meter
objo | mouth organ liquor ceramic pasture skater
objs driver ladle roll driftwood tripod
objyg snout motorboat  toilet seat folding chair monster

t11 t12 13 14 15
obJj coaster padlock mansion bike lane polka dot
objs ceremony concrete scale brownie out
objs | showerdoor  spaghetti zombie color keyboard
objy signature bee potato wine bottle autumn

ti6 ti7 lig tig t20
obj food stand mill spinach crack package
obs design handbag underwater teal coffee
objs scone wet knot level side table
objs | camouflage clothe deliver tape coconut

to1 22 t23 o4 las
obJ1 dart urban enclosure pottery buffet
objs city street sweatshirt ~ screen door bookcase gravel
obijs blackberry bowl turret shelter apple
objy goalkeeper bike lane tricycle squad rearview mirror




