CoStoDet-DDPM: Collaborative Training of Stochastic and Deterministic
Models Improves Surgical Workflow Anticipation and Recognition

Supplementary Material

7. More Dataset for Recognition

7.1. Datasets and Inplementation Details

Following the Rebuttal phase and the Area Chair’s sugges-
tions, we include two additional datasets in the Supplemen-
tary Material of the final version to further validate the ef-
fectiveness of CoStoDet-DDPM in surgical phase recog-
nition. The CATARACTS dataset consists of 50 cataract
surgery videos, each ranging from 6 to 40 minutes in du-
ration, and annotated with 19 fine-grained surgical steps.
We follow BNPitfalls [48] protocol and resample the videos
to 5 FPS, using a 25/25 split for training and testing. The
OphNet-APTOS dataset [1], a subset of OphNet [22], origi-
nates from the APTOS Big Data Competition Phase Recog-
nition of Surgical Videos Using ML and contains cataract
surgery videos. We use the official training set (401 videos)
and validation set (95 videos), which are annotated with 35
surgical phases. Videos are resampled to 1 FPS for consis-
tency.

The experimental settings for both CATARACTS and
OphNet-APTOS are kept consistent with those used in the
main paper, except that the learning rate for CATARACTS
is modified to 5e — 5.

7.2. Comparison with State-of-the-arts

We compare our method with previous SOTAs on
CATARACTS and OphNet-APTOS, the results are shown
in Table 5. The results demonstrate that our co-training
scheme CoStoDet-DDPM achieves more accurate recogni-
tion across a greater number of phases or steps. Specifically,
our method yields improvements of 2.5% and 0.9% in Jac-
card index on the two datasets, respectively, highlighting its
robustness and generalization capability.

Datasets Methods Accuracy T Precision T Recall T Jaccard 1

SV-RCNet [24] 81.3 66.0 57.0 47.2

3D-CNN [12] 80.1 66.2 55.7 45.9

TeCNO [6] 79.0 62.6 56.9 45.1

TMRNet [26] 80.6 & 10.2 63.1 54.6 45.7

CATARACTS Trans-SVNet [14] 77.8 61.3 55.0 43.8

Dual Pyramid [4] 84.2 69.3 66.4 53.7

BNPitfalls [48] 83.3 66.8 61.8 50.3

DACAT [61] 85.7+10.9 63.8 64.8 53.5

Ours 87.1+10.5 67.9 65.4 56.2
TeCNO-ResNet50 [6] 67.8 46.0 42.6 -
TeCNO-ViT-Base [6] 67.7 45.7 4.1 -

OphNet-APTOS BNPitfalls [48] 729+ 14.7 50.6 48.2 35.3

DACAT [61] 73.2+13.7 52.8 48.5 38.1

Ours 75.5+14.5 54.0 50.2 39.0

Table 5. Comparison results (%) with SOTA on CATARACTS
and OphNet-APTOS. Bold: Best results. Underline: Second-best
results.

8. More Ablation Study
8.1. Observation Encoder of DDPM

We explored the impact of different observation encoders
in the DDPM. As shown in Table 6, it is evident that in-
corporating temporal processing with LSTM, using longer
sequences, and simultaneously performing both tool and
phase tasks are beneficial for the results. Most importantly,
incorporating the task loss term Lr,s) significantly im-
proves performance.

Encoder seq Tool Phase Smooth
ResNet18-GN 32 | 1.35/0.63/2.61 -
ConvNeXt 32 | 1.17/0.49/2.46 -
ConvNeXt 64 | 1.02/0.46/2.16 -

ConvNeXt-LSTM 64 | 0.97/0.29/2.05 - -
ConvNeX(-LSTM 64 | 0.97/0.34/2.03 0.63/0.19/1.05 0.133 + 0.079
Ours (w/ Lrask) 64 | 0.93/0.34/1.75  0.62/0.23/0.86  0.095 + 0.077

Table 6. The impact of different observation encoders on DDPM
performance. The results are evaluated on Cholec80 with h = 5
min. The columns present wMAFE /outM AE /e M AE, while
Smooth is reported as Smoothroor + Smoothphase. All in-
ferences use DDIM with 16 steps. ResNet18-GN denotes a model
where Batch Normalization is replaced with Group Normalization.

Output Branch A\ Tool Phase Smooth
D 1 | 0.95/0.31/2.04 0.63/0.20/1.03  0.093 + 0.073
T 1 | 0.94/0.32/2.04  0.61/0.20/1.03  0.031 + 0.026
D 16 0.91/0.36/1.83 0.58/0.21/0.83  0.057+0.044
T 16 | 0.91/0.35/1.85 0.58/0.20/0.85  0.028 + 0.021
o D 32| 093/0.34/1.75  0.62/0.23/0.86  0.095+0.077
T 32 | 0.91/0.29/1.77 0.59/0.18/0.88  0.025 + 0.020

Table 7. Comparison of results between D and 7 with different
A. The evaluation is conducted on Cholec80 with h = 5 min.
The columns report wM AE /out M AE /eM AE, while Smooth
is presented as Smoothroor+SmMoothprase. All experiments are
conducted using CoStoDet-DDPM, where D performs inference
with DDIM (16 steps), and the clip sequence length is set to 64.

8.2. Historical Time Span of Labels in DDPM

We also investigated the historical span A of labels, as
shown in the Table 7. Due to memory and time constraints,
we explored A = 1, 16, and 32. When A = 1, only the
current frame label is used. The results show that incorpo-
rating historical information improves the anticipation per-



wMAFE |/ out MAE || eMAFE |
Method Tool Phase
h = 2 min h = 3 min h = 5 min h = 2 min h = 3 min h = 5 min
Add 0.39/0.05/0.94 0.56/0.13/1.31 0.95/0.33/2.07 | 0.27/0.05/0.58 0.37/0.09/0.68 0.60/0.19/0.99
Concat 0.41/0.05/0.99 0.56/0.13/1.29 0.91/0.30/1.94 | 0.28/0.05/0.59 0.37/0.09/0.68 0.59/0.21/0.89
Att-UNet 0.40/0.06/0.99 0.57/0.11/1.36  0.96/0.36/2.08 | 0.29/0.05/0.59 0.39/0.10/0.72 0.60/0.22/1.04
FiLM (Ours) | 0.39/0.05/0.93 0.56/0.09/1.28 0.91/0.29/1.77 | 0.27/0.05/0.52 0.39/0.09/0.67 0.59/0.18,/0.88
Table 8. The impact of denoising network architecture and conditional feature fusion.
wMAE |/ outMAE || eMAE |,
Method Tool Phase
h = 2 min h = 3 min h = 5 min h = 2 min h = 3 min h = 5 min
BNP 0.40/0.06/1.06  0.58/0.13/1.42 0.96/0.41/2.11 | 0.29/0.06/0.63 0.39/0.10/0.78 0.61/0.24/0.99
MaskAE 0.41/0.13/0.97 0.64/0.26/1.47 1.17/0.66/2.27 | 0.29/0.10/0.62 0.45/0.20/0.76  0.79/0.44/1.21
CURL 0.41/0.07/1.01  0.58/0.16/1.44 1.01/0.52/2.05 | 0.27/0.06/0.55 0.39/0.11/0.74 0.63/0.32/0.91
GC 0.40/0.08/1.03  0.59/0.19/1.35 0.98/0.44/2.04 | 0.29/0.08/0.60 0.39/0.13/0.66 0.60/0.24/0.93
RandomMask | 0.41/0.05/0.99 0.56/0.11/1.29 0.91/0.28/1.86 | 0.30/0.06/0.60 0.38/0.09/0.70 0.60/0.17/0.90
FiLM (Ours) | 0.39/0.05/0.93 0.56/0.09/1.28 0.91/0.29/1.77 | 0.27/0.05/0.52 0.39/0.09/0.67 0.59/0.18/0.88

Table 9. The impact of co-training methods.
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Figure 10. The impact of denoising network architecture and con-
ditional feature fusion. The scale represents rankings, with de-
tailed data provided in the Table 8.

formance, and the effects of A = 16 and A = 32 are nearly
identical.

8.3. Denoising Network Architecture and Condi-
tional Feature Fusion

We explored the impact of feature fusion methods and de-
noising network architectures within D. Specifically, we
investigated three approaches: (1) directly adding the con-
ditional features at each layer (Add), (2) concatenating the
conditional features with the noisy features before inputting
them into the U-Net (Concat), and (3) using Attention U-
Net (Att-UNet) as the denoising network. As shown in Fig-
ure 10, FILM and U-Net are more effective for co-training,
leading to improved performance.

Methods Ir, wd Accuracy 1T Precision T Recall 1 Jaccard T

BNPitfalls | le —4,1le—2 | 93.7+4.1 88.7 87.7 79.2

T w/D [ le—4,1e—2| 922466 87.0 866 71712
w/ D le—3,1e—2 | 94.1+3.5 88.9 89.2 80.8
w/ D le—3,1e—6 | 91.3+£6.7 84.0 86.3 4.7
DACAT | le—5,1le—2 | 94.1+43 89.2 88.5 80.6

w/D | le-51e—2| 945+36 884 902 | 814
w/ D le—5,1le—6 | 944+3.6 88.1 89.8 80.9

Table 10. The impact of different learning rate (Ir) and weight
decay (wd) for recognition results on Cholec80.

8.4. Concrete Experiment Results

We present more detailed results of two ablation experi-
ments: Denoising Network Architecture and Conditional
Feature Fusion Sec. 8.3, as shown in Table 8, and Differ-
ent Collaborative Learning Strategies Sec. 4.3, as shown in
Table 9.

9. More Discussion

9.1. Sensitivity to Hyperparameter for Recognition

For phase recognition, we find that CoStoDet-DDPM is sen-
sitive to the learning rate (/) and weight decay (wd) during
training, as shown in Table 10. For BNPitfalls, a higher
learning rate than the original one is required to fully lever-



age the effect of D. For DACAT, the original {r and wd
settings are sufficient. Due to time and resource constraints,
we have not yet fully explored the optimal parameters for
the recognition task, and further investigation is needed in
the future.

9.2. Modal Complexity Analysis

We take the phase recognition task as an example to an-
alyze the model complexity during both training and in-
ference when integrating our method with different SOTA
baselines, i.e., BNPitfalls (BNP) and DACAT. All experi-
ments are conducted on an NVIDIA GeForce RTX 4090
24GB GPU, and the results are shown in Table 11. Al-
though the introduction of FiLM-UNet increases the num-
ber of model parameters, the additional complexity remains
limited due to the compact size of the conditional feature
c; € R®'2, Importantly, since DDPM is discarded during
inference, the overall complexity and speed remain consis-
tent with the original SOTA methods.

Moreover, Table 11 presents a detailed analysis of the
complexity when employing our D under different DDIM
sampling steps (1-step, 16-step, and 100-step). In sum-
mary, our co-training framework introduces only a modest
increase in training cost, while providing significant perfor-
mance gains.

Methods Param (M) FLOPs (G) GPU (GB) FPS
BNP 30.4 71/-, -, - 8.5/09 91.0
Ours (BNP) 280.0 7.1/9.5,45.2,245.1 15.0/0.9 91.0
DACAT 62.6 14.2/-, -, - 13.9/1.2 39.5
Ours (DACAT) 312.2 14.2/20.6, 56.3,256.3 23.6/1.2 39.5

Table 11. All complexity measurements are conducted on the
same hardware platform: an NVIDIA GeForce RTX 4090 24GB
GPU. FLOPs are reported separately for inference using the Task
branch only (7") and the Diffusion branch (D) under DDIM sam-
pling with 1, 16, and 100 steps. GPU usage is measured for both
the training stage (on batched frames) and the inference stage (on
a single frame).



