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7. Proofs of Donsker-Varadhan Representation
Theorem

We provide this section for helping understand mutual in-
formation maximization formula in Sec. 3.1. We typically
need to estimate a lower bound of mutual information and
then continuously raise this lower bound to achieve the goal.
Among them, Donsker-Varadhan theorem [17] is a com-
monly used estimation of the lower bound of mutual infor-
mation. Belghazi et al. [5] converts it into the dual repre-
sentation:

IMINE = Ep(x,y)[f(x, y)]−log(Ep(x)p(y)[e
(f(x,y))]). (20)

Donsker-Varadhan representation theorem [17]. The
KL-divergence possesses the following dual representation
supremum:

DKL(P||Q) = sup
T : Ω→R, T∈F

EP[T ]− log(EQ[e
T ]), (21)

where the supremum is taken over all functions T such that
the two expectations ar finite. F be any class of functions
T : Ω → R satisfying the integrability constrains of the
theorem.

For a given function T , consider the Gibbs distribution
G defined by dG = 1

Z eTdQ, where Z = EQ[e
T ]. By

construction

EP[T ]− log(EQ[e
T ]) = EP[log

dG

dQ
], (22)

as T = log[Z dG
dQ ] = logZ + log dG

dQ = log(EQ[e
T ]) +

log dG
dQ . Let ∆ be the gap, and combining Eqn. 22:

∆ = DKL(P||Q)−
(
EP[T ]− log(EQ[e

T ])
)
, (23)

∆ = DKL(P||Q)− EP[log
dG

dQ
], (24)

∆ = EP[log
dP

dQ
− log

dG

dQ
] = EP[log

dP

dG
] = DKL(P||G),

(25)

we can easily draw the conclusion that ∆ ≥ 0, be-
cause KL-divergence DKL(P||G) is always positive, i.e.,
DKL(P||Q) ≥ EP[T ] − log(EQ[e

T ]). The proof is com-
pleted.

Since mutual information can be written in the form of
the KL-divergence between the joint distribution and the
product of the marginal distribution, such a lower bound can
also be obtained for mutual information. The idea of [5] is

to choose F to be the family of functions parametrized by a
deep neural network with parameters θ ∈ Θ, so there exists:

I(X;Y ) ≥ IΘ(X;Y ), (26)

where IΘ(X;Y ) is defined as:

IΘ(X;Y ) = sup
θ∈Θ

EPXY
[Tθ]− log(EPXPY

[eTθ ]). (27)

In code implementation, we estimate the expectations in Eq.
27 using empirical samples from PXY and PXPY (i.e., by
shuffling the samples from the joint distribution along the
batch axis). Ultimately, the objective function can be opti-
mized through gradient descent and back propagation. The
common approach is to use an independent neural network
to process the features of two modalities X and Y . Instead,
we employ the average of the mutual information tokens
mentioned in Eqn. 12, 15, where the MI tokens represent
the summarization of fused features. It can be seen as a
special case of the score function f(x, y).

8. Supplementary Experimental Results

Empirical studies on hyper-parameters. In Tab. I, we
conduct empirical studies on the λ coefficients of different
loss terms. We select appropriate λ values within the inter-
val of (0,1) to find the relatively optimal combination. The
final combination obtained is (λmi, λangle) = (0.1, 0.3). In
Tab. J, we carry out empirical studies on temperature co-
efficients τl and τs. We attempt various values for τl and
τs within the interval of (0,1) to determine the relatively
optimal combination. Meanwhile, based on the experience
from some previous studies [27, 79], we assume that live
and spoof samples exhibit an asymmetry distribution with
different degree pf relaxation in the hyper-feature space.
Therefore, when conducting our attempts, we prefer to im-
pose a more compact feature distribution to the live sam-
ples, while allowing the spoof samples to have a looser fea-
ture distribution. The optimal combination we have found
is (τl, τs) = (1.0, 0.85).

Convergence speed of CDC-Adapter and vanilla convo-
lutional Adapter. In face anti-spoofing field, there are lots
of works [9, 82, 84], apply central difference convolution
operator for live/spoof representation capture. The CDC
[84] operator combines both intensity-level semantic infor-



Table I. Empirical studies on λ coefficients.

λmi λangle HTER (%) ↓ AUC (%) ↑
0.3 0.5 15.54 90.54
0.2 0.5 14.98 90.63
0.1 0.5 14.33 91.65
0.1 0.4 14.02 91.94
0.0 0.4 14.52 92.11
0.0 0.3 14.31 92.05
0.1 0.3 13.63 92.96

Table J. Empirical results on temperature coefficient τl and τs.

τl τs HTER (%) ↓ AUC (%) ↑
1.0 0.5 15.80 90.77
1.0 0.6 15.25 90.68
1.0 0.7 14.74 91.05
1.0 0.8 14.28 91.93
1.0 0.9 13.91 92.30
0.9 0.8 14.09 91.92

0.95 0.8 13.85 91.98
1.0 0.85 13.63 92.96

mation and gradient-level messages:

y(p0) = θ ·
∑
pn∈P

w(pn) · (x(p0 + pn)− x(p0))︸ ︷︷ ︸
central difference convolution

(1− θ) ·
∑
pn∈P

w(pn) · x(p0 + pn)︸ ︷︷ ︸
vanilla convolution

, (28)

where p0 is current location on input feature map while pn
enumerates the locations in P (pixel neighborhood), w(pn)
are the weights of convolutional kernel corresponding to the
location pn, hyper-parameter θ ∈ [0, 1] tradeoffs the impor-
tance between intensity and gradient information.

In Fig. 7, we compare the convergence speed of Adapters
based on vanilla convolution and CDC. Combining the re-
sults from Tab. G, they demonstrate that the convergence
speed of the vanilla convolution (which tends to stabilize af-
ter about 20 epochs) is faster then CDC (which tends to sta-
bilize after about 30 epochs), and the performance of CDC
is better. This phenomenon indicates that vanilla convolu-
tional Adapter may have higher risk of overfitting compared
to CDC-Adapter, CDC-Adapter is more robust for our back-
bone’s fine-tuning.

9. Algorithm

The multi-modal PG-IRM algorithm is shown as below.
Additionally, our input contains three modalities and in-
cludes a constraint term of angle margin in the total loss,
therefore, the algorithm is designed with dual alignment of
hyperplanes and angles. Our DADM optimization pipeline:

Figure 7. Convergence speed of different convolutional Adapter.
(a) CDC (Central Difference Convolution)-Adapter. (b) Vanilla
Convolutional-Adapter.

Algorithm 1 The optimization pipeline of DADM

Input: Source Data S = {xRGB
i , xD

i , x
I
i, yj , ei}Ni ,Target

Data T = {xRGB
j , xD

j , x
I
j , yj}Mj , neural network ϕ(·),

classifiers βe1 , βe2 , · · · , βE , learning rate γ, alignment
parameter α, alignment starting epoch Tα.

Output: ϕ(·), mean(βe1 , βe2 , · · · , βE)
1: for t in 0, 1, · · · , T do
2: Data Prep: Sampling a mini-batch B samples, Xs =

{xRGB
i , xD

i , x
I
i, yj , ei}Bi

3: Forward: Obtain multi-modal features and scores,
[fRGB

i , fD
i , f I

i ]ei = ϕt([xRGB
i , xD

i , x
I
i]ei), ŷei =

βt
ei [f

RGB
i , fD

i , f I
i ]ei

4: Backward: Compute Ltotal, update ϕt+1 = ϕt −
γ∇ϕtLtotal

5: for e ∈ E do
6: β̃t+1

e = βt
e − γ∇βt

e
Ltotal

7: select βt
ē with ē = argmax

e′∈E\e
||β̃t+1

e − βt
e′ ||2

8: α′ = 1− 11>Tα
(1− α)

9: βt+1
e = α′β̃t+1

e + (1− α′)βt
ē

10: end for
11: β̄t+1 = mean(βt+1

e1 , βt+1
e2 , · · · , βt+1

E )
12: Evaluate: Test ϕt+1(·), β̄t+1 on T
13: if performance better then
14: update ϕ∗(·) = ϕt+1(·), β∗ = β̄t+1

15: end if
16: end for
Return ϕ∗(·), β∗

10. Proofs of the Necessity of Domain Align-
ment and Angle Alignment

Invariant Risk Minimization (IRM) is a challenging bi-level
optimization problem that is hard to solve. Thanks to the ef-
forts of Sun et. al [69], they propose the Projected Gradient
Optimization for IRM (PG-IRM) which is an equivalent ob-
jective to IRM, with strict proof, and it is easier to optimize.
The brief proof process is as follows:
Theorem 1. Projected Gradient Optimization IRM ob-
jective is equivalent to IRM objective. For all α ∈ (0, 1),



the IRM objective is equivalent to the following objective:

min
ϕ,βe1

,··· ,βE

1

|E|
∑
e∈E

Re(ϕ, βe),

s.t.∀e ∈ E , ∃βe ∈ Ωe(ϕ), βe ∈ Υα(βe) , (29)

where the parametric constrained set for each environment
is simplified as Ωe(ϕ) = argmin

β
Re(ϕ, β), and the α-

adjacency set is defined as:

Υα(βe) ={v | max
e′∈E\e

min
βe′∈Ωe′ (ϕ)

||v − βe′ ||2

≤ α max
e′∈E\e

min
βe′∈Ωe′ (ϕ)

||βe − βe′ ||2}. (30)

Proofs 1.
The IRM objective is the following constrained optimiza-
tion problem:

min
ϕ,β∗

1

|E|
∑
e∈E

Re(ϕ, β∗),

s.t. β∗ ∈ argmin
β

Re(ϕ, β), ∀e ∈ E , (31)

where ϕ represents a neural network, β denotes the hyper-
plane for classification, E = {e1, e2, · · · , e|E|} represents
the entire environment, e is one of the sub-environments,
and f(x;β, ϕ) is the function processing x via ϕ, β and ob-
taining y. The risk function Re(ϕ, β), based on the loss
function L(·, ·), for a given environment e, is defined as:

Re(ϕ, β) = E(x,y)∼e[L(f(x;β, ϕ), y)]. (32)

The constrain β∗ = argmin
β

Re(ϕ, β), ∀e ∈ E , means that

the β∗ is the optimal linear classifier for all e ∈ E , which is
equivalent to β∗ ∈ ∩

e∈E
Ωe(ϕ), and equivalent to:

∀e ∈ E , ∃βe ∈ Ωe(ϕ), β
∗ = βe . (33)

This indicates that for all e ∈ E , there is a hyperplane in the
optimal set Ωe(ϕ) that also lies in the intersection of other
environments’ optimal set ( ∩

e′∈E\e
Ωe′(ϕ)), i.e.:

∀e ∈ E , ∃βe ∈ Ωe(ϕ), βe ∈ ∩
e′∈E\e

Ωe′(ϕ) . (34)

Sun et. al [69] relax the constrain to:

βe ∈ ∩
e′∈E\e

Ωe′(ϕ) → max
e′∈E\e

||βe − Ωe′(ϕ)||2 ≤ ϵ , (35)

due to one key challenge for constrain 34 is that there is a
no guarantee that is non-empty for a feature extractor ϕ and
βe. Then they define the l2 distance between a vector β and
a set Ω as: ||β − Ω||2 = min

e′∈E\e
||β − υ||2. Practically, ϵ can

be set to be any variable converging to 0 during the opti-
mization stage. Without losing the generality, they change
the constraint to the following form:

∀e ∈ E , ∃βe ∈ Ωe(ϕ), (36)
max
e′∈E\e

min
βe′∈Ωe′ (ϕ)

||βe − βe′ ||2 ≤

α max
e′∈E\e

min
βe′∈Ωe′ (ϕ)

||βe − βe′ ||2, (37)

where α ∈ (0, 1). Note that constraint 36 will be satisfied
only when max

e′∈E\e
min

βe′∈Ωe′ (ϕ)
||βe − βe′ ||2 = 0. Therefore

constraint 34 is equivalent to constraint 36.
Let’s define Υα(βe):

Υα(βe) ={v | max
e′∈E\e

min
βe′∈Ωe′ (ϕ)

||v − βe′ ||2

≤ α max
e′∈E\e

min
βe′∈Ωe′ (ϕ)

||βe − βe′ ||2}, (38)

then the constraint 33 can be simplified to:

s.t.∀e ∈ E , ∃βe ∈ Ωe(ϕ), βe ∈ Υα(βe) . (39)

Proofs 1 Completed.
Above Theorem 1 ensures that the PG-IRM’s optimiza-

tion objective being equivalent to the IRM’s optimization
objective.
Why we need dual alignment of hyperplane and an-
gle margin? In uni-modality scenarios, misalignment has
always been a critical concern, as it relates to whether
domain-invariant representations have been truly learned.
MMDG [42] found that directly incorporating multi-
modality into DG-FAS can result in performance degra-
dation, indicating the significance impact from domain
and modality misalignment. Therefore, dual alignment of
modality and domain is crucial.
Theorem 2. Misalignment of angle margin for modal-
ity features leads to severe shift and difficult conver-
gence of the optimal classification hyperplane β∗ in PG-
IRM. For misaligned angle margin among modalities fea-
tures in varies domains [fe

0 , ..., f
e
i , ..., f

e
M]M ∈ E , where

[fe
0 , ..., f

e
i , ..., f

e
M] = ϕ([xe

0, ..., x
e
i , ..., x

e
M]) ∈ RD×M, xe

i

represents single modality input i from environment e. The
the optimal classification hyperplane β∗ will severely shift.
Notation declarations.
For fe

i (k), f represents the feature, the superscript e de-
notes fe comes from environment e, the subscript i denotes
the i-th modality feature, f(k) indicates the k-th element of
f . Specially, fe (without subscript) denotes final fusion fea-
ture from environment e, fe(k) indicates the k-th element
of fe.
Proofs 2.
For [fe

0 , ..., f
e
i , ..., f

e
M] = ϕ([xe

0, ..., x
e
i , ..., x

e
M]) ∈

RD×M, where fe
i ∈ RD×1 and M is the number of modal-

ities, we construct a modality matrix for environment e:

Fe = [fe
0 , ..., f

e
i , ..., f

e
M] ∈ RD×M, (40)



the final fusion feature fe is obtained via a linear projecting
P ∈ RM×1:

fe = FeP =

M∑
i

pif
e
i ∈ RD×1. (41)

Intra-domain case.
The intra-domain co-variance matrix of fe is as follows (for
the simplicity, we omit the superscript e):

E[f ] =
M∑
i

p(i)E[fi],

D[f ] = E[(f − E[f ])(f − E[f ])T]

= E[ffT]− E[f ]E[f ]T

= E[FPPTFT]− E[f ]E[f ]T, (42)

where p(i) denotes the i-th element of P.
Assuming that the modality features fe

i have been nor-
malized before classification by the classifier β, i.e., E[fi] =
0, ||fi|| = 1, thus Eqn. 42 can be rewritten as:

E[f ] = 0,

D[f ] = E[FPPTFT], (43)

and k-th diagonal elements of co-variance matrix D[f ],
which represents the D[f(k)]:

D[f(k)] = p(k)2E[< fk, fk >]

= p(k)2E[||fk|| · ||fk||cosθk]
= p(k)2E[cosθkk], (44)

where <,> indicates the inner product, p(k) denotes the
k-th element of P.

Since we consider that the distribution of angles θkk (θ)
without intervention generally does not approach a constant
distribution, in order to maintain generality, we suppose that
θ follows a Gaussian distribution with µ and variance σ,
N(µ, σ):

f(θ) =
1

σ
√
2π

exp(− (θ − µ)2

2σ2
). (45)

Then we can calculate the value of E[cosθ]:

E[cos(θ)] =
∫ ∞

−∞
cos(θ) · 1

σ
√
2π

exp(− (θ − µ)2

2σ2
)dθ,

(46)

cos(θ) =
exp(−iθ) + exp(iθ)

2
, (47)

E[cos(θ)] =
1

2
(E[exp(−iθ)] + E[exp(iθ)]). (48)

For Gaussian distribution N(µ, σ), its characteristic func-
tion is Φ(t) = E[exp(−itθ)] = exp(iµt− σ2t2

2 ).
The characteristic function when t takes 1 and -1 is:

E[exp(iθ)] = exp(iµ− σ2

2
), (49)

E[exp(−iθ)] = exp(−iµ− σ2

2
). (50)

Substitute Eqn. 49, 50 into Eqn. 48:

E[cos(θ)] =
1

2
(exp(iµ− σ2

2
) + exp(−iµ− σ2

2
)),

E[cos(θ)] =
1

2
exp(−σ2

2
) · 2cos(µ) = exp(−σ2

2
)cos(µ).

(51)

Thus, increasing the variance (σ) of θ will leads to a de-
crease in the value of D[f(k)]:

D[f(k)] = p(k)2exp(−σ2

2
)cos(µ). (52)

This result indicates that when the angle margins θ between
modalities exhibit a significant disturbance, the D[f(k)]
will decrease.
Inter-domain case.
The inter-domain co-variance matrix between fe1 and fe2

is as follows:

E[fe1 ] =

M∑
i

p(i)E[fe1
i ], E[fe2 ] =

M∑
i

p(i)E[fe2
i ],

C[fe1 , fe2 ] = E[(fe1 − E[fe1 ])(fe2 − E[fe2 ])T]

= E[fe1fe2T]− E[fe1 ]E[fe2 ]T

= E[Fe1Pe1Pe2TFe2T]− E[fe1 ]E[fe2 ]T.
(53)

Please note that fe1 and fe2 exhibit the same liveness label.
Assuming that the modality features fe

i have been
normalized before classification by the classifier β, i.e.,
E[fe

i ] = 0, ||fe
i || = 1, thus Eqn. 53 can be rewritten as:

E[fe1 ] = 0, E[fe2 ] = 0,

C[fe1 , fe2 ] = E[Fe1Pe1Pe2TFe2T], (54)

the k-th diagonal elements of C[fe1 , fe2 ], which represents
the co-variance between fe1(k) and fe2(k):

C[fe1(k), fe2(k)] = p(k)2E[< fe1
k , fe2

k >]

= p(k)2E[||fe1
k || · ||fe2

k ||cosθkk]
= p(k)2E[cosθkk]. (55)

Similarly, we can also conclude that increasing the vari-
ance (σ) of θ will also lead to a decrease in the value of
C[fe1(k), fe2(k)] according to Intra-domain case.



Figure 8. Illustration of dual alignment of domain and modality for four sub-protocols. (a) feature distribution of source and target domains,
the dotted line represents the decision hyperplane in 2D space. (b) Mean and Std. of cosine similarity among modalities in the source and
target domains.

The impact of D[f(k)] on the convergence and shift of β.
Before computing the loss function, we need to use a
linear classifier β and softmax(·) projecting final fu-
sion feature f to logits ŷ, where z = βf , ŷ =

[
exp(zp)

exp(zp)+exp(zn)
, exp(zn)
exp(zp)+exp(zn)

], p represents positive
sample, n represents negative sample. Considering that us-
ing cross-entropy loss:

L = −I(labelGT)ŷlogŷ (56)

where ŷp, ŷn ∈ (0, 1), the gradient of L:

∇βt
e
L = I(labelGT)∇βt

e
ŷ
∂L
∂ŷ

= −I(labelGT)∇βt
e
ŷ(logŷ + 1) (57)

then we consider the variance of zp = βpf =∑D
k w(k)f(k) (the same applies to the analysis of zn =

βnf ), which D[zp] =
∑D

k w(k)2D[f(k)], w(k) is the
weight of βp. When the σ of θkk increases, the D[f(k)] de-
creases, so does the D[zp]. The smaller D[zp] and D[zn] will

lead to the difference between zp and zn may be subtle at
the start of training (supposing that randomly initialization
does not favor either zp or zn), resulting in a flatten value of
softmax output ŷ, i.e., the value of logits (ŷ) tend towards a
uniform distribution. And we can easily know that the func-
tion ŷlogŷ has its maximum value when the probability of
ŷ reaches 1/n (for two categories, n equals to 2).

At this point, the drastic fluctuation in θkk will cause the
absolute value of gradient |∇βt

e
L| to be difficult to converge

to a smaller value. According to line 6-9 in Algorithm 1:

βt+1
e = α′β̃t+1

e + (1− α′)βt
ē → ē = argmax

e′∈E\e
||β̃t+1

e − βt
e′ ||2,

βt+1
e = α′(βt

e − γ∇βt
e
Ltotal) + (1− α′)βt

ē,

βt+1
e = βt

ē + α′(βt
e − βt

ē)− α′γ∇βt
e
Ltotal, (58)

t starts from 0 to T, the single-step shift will accumulate in-
creasingly, resulting in the optimal classification hyperplane
β̄T+1 = mean(βT+1

e1 , βT+1
e2 , · · · , βT+1

E ) shift severely.
Proofs 2 Completed.



Figure 9. More visualization attention maps on varies attack sam-
ples, for example, replay attack, 3D mask, paper printing.

11. Visualization
Comprehensive visualization of dual alignment of do-
main and modality. Fig. 8 presents the visualizations
of dual alignment of hyperplanes and angles for four sub-
protocols in Tab. A. we can observe that in the sub-
protocols CPS → W and CPW → S, the hyperplane for
the live/spoof decision remains consistent across different
source domains and is also transferable to unseen target do-
main. Moreover, the angles between the source domains
and the target domain are relatively close to the expected
values. In contrast, the other two sub-protocols PSW → C
and CSW → P, exhibit slightly poorer illustration. Corre-
spondingly, they also show poorer performance in Tab. A,
which might be due to their encountering of a more signifi-
cant domain shift.
More visualization attention maps. In Fig. 9, For 3D
masks, the face region in the depth map is shown with
cooler color, indicating its weak influence. For paper-
printing attacks, depth information is particularly revealing
of spoof cues, thereby warranting higher importance. For
video replay attacks, more obvious spoofing traces were ob-
served from infrared and depth maps, so both of them have
higher importance than RGB.


