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In the supplementary material, we provide more imple-
mentation details and comparison results. The details of
different conditioning settings are described in Section 6.
More details about our networks are provided in Section 7.
The dataset extraction strategy of DSEC [8] is illustrated in
Section 8. The training details are shown in Section 9. We
provide more qualitative comparisons of ablation studies in
Section 10. We show the diverse diffusion results in Sec-
tion 11 to support the proposed structure loss as described
in Section 3.3. We include human study to further support
our results in Section 12. Efficiency comparison of exist-
ing methods is illustrated in Section 13. More results on
synthetic and real data are provided in Section 14 and Sec-
tion 15. Finally, we provide the consecutive results of our
method to show its limited performance on video generation
in Section 16.

6. Different conditioning settings

In Section 3.2, we introduce two other kinds of conditioning
settings, concatenating LDR images and events, and adopt-
ing restored images as conditions, respectively. In this sec-
tion, we provide more details about those two settings.

ConCond: concatenating LDR images and events. As
described in Section 3.2 by Equation (5), one of the condi-
tioning settings is directly concatenating LDR images and
events as the input for embedding module T¢oncond, Which
is denoted as “ConCond”. The architecture of the embed-
ding module is shown in Figure 9. The input condition
channel K is set to 3 + C, in which 3 is the number of
channels of LDR image and C' is the number of channels
of stacked events voxel described by Equation (4). The
embedding module 7¢oncona aligns the shape of the inputs
with latent space, which consists of one convolutional layer,
three down-sample layers, and a final convolutional layer.
Each down-sample block is composed of two convolutional
layers with a kernel size of 3 x 3, where the stride is 1 and
2, respectively. The results of embedding module T¢oncond
are provided to the control module C to control the diffusion
process as described in Equation (5) and Equation (9).
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Figure 9. Architecture of embedding module Tconcond (I = 34+C)
and Tresiccond(KX = 3). The number in each box is kernel size,
output channel, and stride, respectively.

RestCond: adopting restored images As described in
Section 3.2 by Equation (7), another conditioning setting
is applying restored image provided by HDRev [49] as the
input for embedding module 7Restcond, denoted as “Rest-
Cond”. The embedding module Tgestcond for “RestCond” is
modified from embedding module Tconcona by setting the
input condition channel K to 3, as illustrated in Figure 9,
in which 3 is the number of channels of the restored image.
The control module C takes embedding results Eresicong N
Equation (7) as input to control the denoising process as il-
lustrated by Equation (9).

7. Networks details

Event-image Encoder H The architecture of the event-
image encoder H in our implementation is derived from the
original implementation of HDRev [49] as shown in Fig-
ure 3. The modality-specific encoders of events and LDR
images follow the original implementation, and the param-
eters are loaded from the released files. For the modality fu-
sion module, we remove the handcrafted confidence map in
the original implementation to avoid filtering useful infor-
mation. The architecture remains the same as the original,
and all the parameters are initialized from released files.

Control Module C The architecture of control module
C follows the architecture of the denoiser encoder by re-
placing input latent z, with the summation of z; and
condition £(I pgr, F). To simplify training, we initialize
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Figure 10. Architecture of feature fusion layer in refinement module D. A fusion layer is applied before each up-sample layer in the

original VAE.

the parameters of our control module C' using the “con-
trol_vlle_sd15_ip2p” version of ControlNet [51].

Refinement module D The refinement module D de-
codes the estimate latent z; to undistorted HDR image
H with the HDR features from the event-image encoder.
Therefore, we modify the original VAE decoder imple-
mentation to add HDR features into its decoding process.
Specifically, we add a feature fusion layer to each up-
sampler layer of the VAE decoder, which fuses the HDR
feature with the original VAE decode feature by the convo-
lutional layers and residual layers as shown in Figure 10.
K7 and K5 are the dimensions of input HDR features and
decoder features from the original VAE implementation, re-
spectively. Only the added fusion layers and convolutional
output layers are trained in our experiments.

Noise scheduling For the noise scheduler, we adopt
DDIM scheduler as described in Section 3.4 and set the
number of training timesteps to 1000. The noise is added
using a scaled linear beta schedule ranging from 0.00085
to 0.012. The model predicts pure noise (epsilon) during
denoising, following the standard DDPM approach31

8. DSEC [8] dataset

DESC [8] is a dataset for driving scenarios, which contains
paired events and LDR images in different light conditions.
We specifically choose 6 HDR scenes from its test dataset
as our test dataset: “interlaken_00_a”, “interlaken_00_b”,
“interlaken_01_a”, “zurich_city_13_a”, “zurich_city_13_b”,
“zurich_city_15_a”, respectively. For “zurich_city_15_a”,
we only choose the 960th frame to the 1059th frame since
it is not a typical HDR scene.

9. Training details

Dataset preparation We generate the synthetic dataset
for training and testing as described in Section 3.4. After
obtaining the generated HDR images and events, we gener-
ate LDR images from HDR images with the image formu-
lation pipeline, which consists of exposing, dynamic range
clipping, and quantization. We randomly generate exposure
time ¢ to let % pixel to be over-/under-exposed, and z is
uniformly sampled in [0.2, 0.5]. In dynamic range clipping,
the values larger than 1 are clipped to 1. For quantization,
we quantize the original float values into 8 bit integer in
[0,255] and remap them to [0, 1] as the final input. In this
way, we obtain the LDR image L from HDR image O by:

L = |Clip(O - t,max = 1) % 255] /255 (15)

Histogram matching To refine the distortion existing in
our diffusion results (shown by “W/o Refinement”), we
adopt local histogram matching [46] to reduce the bright-
ness and color gap between diffusion results and ground
truth. To perform local histogram matching [46], we first
split the whole image into 2P, x 2P, patches, while P, =
P,, = 8 in our experiments. For each 2 x 2 patch, we
calculate the adjustment parameters based on original his-
togram matching, which are ¢ paired pixel values defining
the brightness mapping from the original image to the des-
tination image. We directly record the paired pixel value of
the original image and destination image as the adjustment
parameters. We set ¢ = 6 in our experiments. To smooth
the parameters of nearby patches, a convolutional layer with
5 x 5 Gaussian kernels is applied to the adjustment parame-
ters with shape Pj, x P,,. The smoothed adjustment param-
eters are applied to each patch to obtain the final adjusted
results. We perform local histogram matching for color im-
ages, which is implemented by separately processing each
channel.

The adjusted examples are shown in Figure 11. The pur-



Figure 11. Adapted GT results on training data. Although our dif-
fusion results (shown by “W/o Refinement”) suffer from distortion
as shown in the green box, it can serve as a good guidance to ad-
just the original ground truth. Adjusting the color and brightness
with the histogram also improves the contrast and color as shown
in the red box.

pose of our histogram matching is to reduce the color and
brightness gap between the supervision target and diffusion
results, which is already achieved as shown in Figure 11.
Besides, the original ground truth suffers from color shifting
in the first and third row, and low contrast by tone mapping
in the second row. Benefiting from diffusion priors embed-
ded in our diffusion results (shown by “W/o Refinement”),
the adapted GT images have better contrast and color, which
can improve the visual quality of the final refined results.

10. Ablation study

Quantitative comparison on iteration steps The im-
pacts of different iteration steps are shown in Table 4. Bal-
ancing performance and inference speed, we finally select 9
iterations.

Quantitative comparison on loss hyperparameter The
hyperparameter experiment for Equation (14) with a =
0.01,3 = 10~* (Param 1) and o = 0.01, 3 = 0.01 (Param
2) are shown in Table 4.

Table 4. Quantitative comparison on iteration steps

PSNR? SSIM{ LPIPS| CIEDE| FID| NIQE/

Iteration-5 24.96 0918 0.111 6.3929.70  3.83
Iteration-9  25.67 0.926 0.099 6.01 27.09 3.86
Iteration-15 25.89 0.928 0.096 5902643 3.88

Param 1 24.85 0.906 0.128 6.56 34.15 3.93
Param2 2476 0909 0.124 6.61 32.01 3.93

Table 5. Efficiency comparison of ablation studies.

FLOPs (G) Params (M) Time (s)

ConCond 8387.563 1270.09 1.33
RestCond 9207.416 1328.03 1.42
W/o Refinement 9122.417 1320.32 1.40
Ours-complete 10380.843 134931 1.41

Qualitative comparison on conditioning The qualitative
evaluation of different conditioning and generation pro-
cesses is illustrated in Figure 12. Directly concatenating
events and LDR image, denoted by “ConCond”, cannot
well-utilize both LDR image and events to provide accu-
rate and sufficient details as depicted by the first row and
the green box of remaining rows in Figure 12. HDRev [49]
fuses LDR image and events to provide better details as
shown by “Restored” in Figure 12, while severe artifacts
exist. And it is difficult to reconstruction faithful details in
high-frequency and significantly over-exposed areas, e.g.,
the red box of the first row in Figure 12. Employing re-
stored results as condition, adopting restored image as con-
dition, indicated by “RestCond”, suffers from information
lost exists in “Restored” as highlighted in the red box of the
first row and the green box of the third row in Figure 12
Also, the artifacts in “Restored” also influence “RestCond”
to provide unfaithful results as shown by the green box of
the second row in Figure 12. Leveraging the HDR features
provided by the event-image encoder as described in Sec-
tion 3.2, the proposed method recovers faithful and colorful
results by making better use of input LDR image and events
with the proposed conditioning and generation method.

Qualitative comparison on structure loss The qualita-
tive evaluation of structure loss is depicted in Figure 13.
Our diffusion results (shown by “W/o Refinement”) may
exist distortion as shown by the green box in Figure 13. To
refine the distortion and provide natural results, we perform
fine-grained detail refinement with the structure loss. With
the proposed structure loss, images with higher contrast and
more details can be generated, as indicated by the green box
of the first row, and the red box in the second and third row
of Figure 13. Besides, introducing structure loss reduces
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Figure 12. Qualitative comparisons on different conditioning and generation processes as described in Section 3.2. It is hard for “ConCond”
to integrate events and LDR image to provide faithful results. “Restored” [49] effectively extracts details by fusing events and LDR image,
while its results exist some artifacts. It also struggles with compensating for large over-exposed areas. “RestCond” provides better details
than “ConCond” in nearly well-exposed areas, but it is misled by “Restored” to provide unsatisfactory results in large over-/under-exposed
areas. The proposed method exploits the information in events and LDR image to provide faithful and colorful recovery results.

the difficulty of color prediction, as discussed in Section 11,
which may lead to unnatural color transition as shown in the
green box of the second row and red box of the fourth row
in Figure 13. Introducing structure loss not only reduces
the difficulty of learning but also provides pleasant visual
results with natural contrast.

Efficiency comparison We calculate the Floating Point
Operations Per Second (FLOPs), the total parameters

(Params), and the running time of all ablation studies, as
shown in Table 5. The ablation studies of structure loss
share the same pipeline, which is the same as our complete
model. The proposed conditioning and generation method
is more efficient than “RestCond”, which indicates that re-
moving redundant decoder-encoder modules improves the
efficiency of leveraging events and LDR image information.
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Figure 13. Qualitative comparisons on structure loss as described in Section 3.3. More natural images with higher contrast and better color

appearance can be reconstructed with the proposed structure loss.

Table 6. Efficiency comparison of existing methods.

FLOPs (G) Params (M) Time (s)
451.004 29.03 0.03

Liu et al. [25]

EventHDR [54] 1229.133 3.14 0.17
Neurlmg [14] 301.385 37.39 0.08
HDRev [49] 821.551 5794 0.79
Sagiri [22]  29327.032 1328.23 5.52
Ours 10380.843 1349.31 1.41

11. Diverse diffusion results

To demonstrate the uncertainty of our diffusion process,
we randomly sample different results with the same input
events and LDR image but different initial noise. The re-
sults are shown in Figure 14. Even with the sample input,
the generation results by the diffusion process have large
color differences even in training datasets. Directly training

the refinement module with ground truth brings color uncer-
tainty, resulting in unsatisfactory color adjustment as illus-
trated in Figure 5 and Figure 13. As demonstrated in Fig-
ure | 1, the adapted ground truth, denoted by “Adapted GT”,
has a similar color appearance as diffusion results. Apply-
ing adapted ground truth as supervision targets makes the
refinement module focus on detail refinement and retains
the generation properties of diffusion models.

12. Human study

We conduct a human study on the real data (DSEC [8]) con-
taining over-/normal-/under-exposed images for perceptual
evaluation. We pick up 97 samples at equal intervals to
construct our human perceptual dataset' to evaluate high-
illuminance, low-illuminance, and overall quality by a sur-

!Please refer to our Github:github.com/YixinYang-00/HDRev-Diff.
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Figure 14. Diversity results with different initial noise. The adapted ground truth has similar color properties as diffusion results, which
makes the refinement module focus on details refinement. Areas with obviously different colors are pointed out by red boxes.

vey link’. All methods are shuffled to avoid bias. Re-
ports from 40 participants on all the samples, as shown in
Table 7, the proposed method achievs highest preference
among those three aspects.

13. Efficiency comparison of existing methods

The efficiency comparison is shown in Table 6. Regression-
based methods [14, 25, 49, 54] have lower FLOPs, parame-
ters, and running time. With a similar diffusion model back-

2Survey link:https://www.wjx.cn/vm/QzCmzw2.aspx#

Table 7. Quantitative evaluation of human study, which is eval-
uated in three aspects: High-illuminance, Low-illuminance, and
Overall preference ratio.

High  Low Overall

Liu et al. [25] 23.00% 17.60% 17.78%
NeurImg [14] 2.58% 1.80% 0.90%
HDRev [49] 2.77% 7.80% 2.96%
Sagiri [22]  5.03% 1.74% 1.10%
Ours 66.62% 71.06% 77.26%
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Figure 15. Qualitative evaluation of synthetic data on dataset collected by Yang et al. [49].



Events Ours HDRev [44]

Jlulilllilﬁl

H_N_EH _ ROl B

Neurlmg [13]

Sagiri [20] Liu et al. [22] EventHDR [49] Dille et al. [4]

Figure 16. Qualitative comparisons of real data on DSEC [8].

bone, the proposed method has lower FLOPs (G) and faster
running time than Sagiri [22]. Only with a slight param-
eter increase, we achieve better performance compared to
Sagiri [22] as shown by Table 1.

14. More results on synthetic data

More quantitative comparisons are shown in Table 8. We
add five metrics laid in two categories to further support

our results. More qualitative comparisons are shown in Fig-
ure 15. EventHDR [54] only reconstructs HDR intensity.
Liu et al. [25] cannot reconstruct HDR scenes only with a
single LDR image as input. Besides, the details in dark re-
gions are wiped as indicated by the green box of the fourth
column in Figure 15. Sagiri [22] has difficulty maintaining
consistency with LDR images and predicting missing infor-
mation in over-/under-exposed areas. However, compared
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Figure 17. Qualitative comparisons of real data on HES-HDR [14].

with Liu et al. [25], Sagiri [22] can predict the handrail with
diffusion priors as depicted in the second column of Fig-
ure 15. Although with events as input, NeurImg [14] and
HDRev [49] are challenged to leverage the HDR informa-
tion in events to reconstruct plausible results. Meanwhile,
HDRev [49], which fuses events and images in the fea-
ture domain, shows better results than NeurImg [14], which

fuses intensity images reconstructed from events with LDR
images in the image domain. The better performance in-
spires us to extract conditions in the feature domain, instead
of reconstructed HDR image at first. The proposed method
reconstructs colorful and plausible results consistent with
LDR images and events.
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Figure 18. Consecutive results of the proposed method on DSEC [8] dataset. The proposed method shows the natural results with fewer
artifacts and proper brightness. GIF animations could be displayed properly when viewed with Adobe Acrobat or KDE Okular.

Table 8. Additional quantitative evaluation of synthetic data.

Liu et al.[25] EventHDR [54] Sagiri [22] HDRev [49] Neurlmg [14] Liang et al. [23] Dille et al. [4] Ours

Video  t-LPIPS’| 0.025 0.112 0.107 0.024 0.021 0.086 0.012 0018
Metrics HDR-VQM|  1.052 1.174 1.138 1.010 1.020 0.958 0.745 0278
upg  HDR-VDP-31  3.540 3.500 3.334 3.537 3.543 3.160 5.870 721
Mo PU-PSNRT  24.643 23.432 23.49 2371 24.73 21.96 3239 32.20

ewics  pyy_sSIMYt 0.451 0.412 0.474 0.460 0.481 0.429 0.800  0.838

15. More results on real data

Comparison on DSEC dataset Additional results on
DSEC [8] dataset are shown in Figure 16. It is difficult
for EventHDR [54] to reconstruct distinguishable details on
real data. Liu et al. [25] and Sagiri [22] are challenged in
predicting over-exposed areas and retaining details in well-
exposed and dark areas. Neurlmg [14] is able to predict
some of the information in over-exposed areas, while the
results are low quality and have obviously artifacts in dark
areas. HDRev [49] better preserves detail in well-exposed
areas than Neurlmg [14], while it is difficult to leverage the
information in events to predict HDR images. The proposed
method leverages the advantage of events and diffusion pri-
ors, providing natural and high-quality HDR images.

Comparison on HES-HDR dataset Additional results
on the HES-HDR [14] dataset are shown in Figure 17.
EventHDR [54] is challenged to reconstruct HDR informa-

tion. Sagiri [22] and Liu ef al. [25] can only hallucinate
HDR information, which is difficult for large over-exposed
areas, as shown in the third and sixth row in Figure 17.
HDRev [49] and Neurlmg [14] are also hard to compensate
for over-exposed areas. The proposed method demonstrates
superior performance in both compensating missing infor-
mation for over-/under-exposed areas and preserving details
in well-exposed regions as depicted by Figure 17.

16. Failure case in consecutive frames

We provide two results in Figure 18 to show our limitation
on video generation. The proposed method does not con-
sider the consecutive connection between adjacent frames.
Although the proposed method maintains consistency with
input LDR images and events, it cannot restore consecutive
details for adjacent frames. Therefore, the over-exposed
areas obviously flicker as demonstrated by the sky of Fig-
ure 18.
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