GSRecon: Efficient Generalizable Gaussian Splatting for Surface Reconstruction
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Supplementary Material

1. More Implementation Details

1.1. Network Details

We construct cascade cost volume to capture the scene
geometry, thereby providing geometric cues for subsequent
Gaussian generation. Specifically, given the image features
F that capture cross-view correlation through a feature
matching transformer [1], we regard each input view as the
reference view and others as source views to construct cost
volume that encodes the feature matching scores via differ-
entiable warping. The cost volume C; € RI*DXHXW g
obtained as:

Cij =< F, Fj_,; >, (D

where F; is the feature map of i-th reference view, FA}_”»
denotes the warped j-th view feature, and < - > denotes
the inner-product of feature vectors at corresponding pixel.
To aggregate the cost volume of different source views, we
generate a pixel-wise weight map for each cost volume,
indicating the reliability of each pixel. Specifically, we first
apply a tiny convolution network with three convolution
layers on the cost volumes, obtaining the weight volume.
We chose the maximum weight along the depth dimension
to generate the final weight map. The aggregated cost is
calculated by:

Ci=> W;Cy, 2

J

where W; is the weight map of Cj;. After that, the cost
volume is regularized by a 3D CNN to obtain the geometry
volume V; and probability volume P,. The depth map is
generated by the winner-take-all strategy and is utilized to
generate subsequent cascade cost volume by redefining the
depth samples.

2. More Experiments

2.1. Evaluation on normal set

In the main paper, we have presented the results of the
average Chamfer distance for all scenes of each method on
the Favorable and Unfavorable sets. Here, we report the
evaluation results on normal image set in Table 1. It can
be observed that our method significantly outperforms the
previous state-of-the-art method, UFORecon, on the chal-
lenging Unfavorable set. On the Favorable set with small
viewpoint variation, our method still exceeds UFORecon by
4%.

2.2. Evaluation on pixel-NeRF set

We note that some methods, such as NeuSurf [3], evaluate
their performance on the pixel-NeRF image set with signifi-
cant viewpoint variations. Here, we also provide evaluation
results on the pixel-NeRF image set in Table 2. Notably,
NeuSurf is a per-scene optimization method that requires
tens of minutes of training to reconstruct a single scene, thus
it cannot generalize directly to new scenes. Nonetheless,
our generalizable method still outperforms NeuSurf by a
large margin.

2.3. Effect of Random Set Training Strategy

To verify the robustness of our method against unseen
and challenging view combinations, we select the closest
viewpoints during training and use viewpoint combinations
with different variations during testing. UFORecon fur-
ther utilizes a random set training strategy to enhance the
performance on the Unfavorable set by randomly selecting
views during the training phase. To analyze the impact of
this strategy, we employ this strategy to baseline models
and report the result in Table 3. As demonstrated in the
table, most methods benefit from this strategy and exhibit
improvements on the Unfavorable set. Nonetheless, this
strategy inevitably results in a slight decline in performance
on the Favorable set due to the instability caused by the
large viewpoint variations in the training set.

2.4. Impact of the Number of Input Views

We investigate the impact of viewpoint density on our
method by varying the number of source views. The
results are reported in Table 4, it can be observed that
performance gradually improves with increasing viewpoint
density. Utilizing more views alleviates challenges associ-
ated with reconstructing difficult areas, such as those that
are occluded or less visible across views.

2.5. Effect of Normal Loss

To align the Gaussian representations with the ground truth
surface, we employ a normal loss to bring the normals of
the Gaussian primitives closer to the surface normals. To
investigate the impact of the normal loss, we present the
performance of retraining our model with and without using
normal loss in Table 5. It can be observed that using normal
loss during training yields better performance.



Table 1. Quantitative results of sparse Normal (medium viewpoint variation) image set reconstruction on 15 testing scenes of DTU dataset.
We report the chamfer distance of each scene, the lower the better. The best performance is in boldface and the second best is underlined.

Methods 24 37 40 55 63 65 69 8 97 105 106 110 114 118 122 Mean
2D GS [2] 356 338 347 124 270 291 231 188 244 159 260 471 087 262 190 278
VolRecon [6] 263 422 289 249 293 250 168 1.84 202 176 235 264 1.16 217 176 234
ReTR [4] 206 372 254 251 175 211 149 157 174 135 188 205 1.00 174 148 1.93
UFORecon [5] 130 2.59 151 139 1.04 128 080 137 116 095 098 090 054 1.06 1.08 1.20
GSRecon (ours) 1.06 219 149 1.04 105 131 073 126 105 079 0.88 0.84 046 098 095 1.07

Table 2. Quantitative results of pixel-NeRF (medium viewpoint variation) image set reconstruction on 15 testing scenes of DTU dataset.
We report the chamfer distance of each scene, the lower the better. The best performance is in boldface.

Methods 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean
SparseNeuS_ft 4.81 5.56 581 2.68 330 3.88 239 291 308 233 264 3.12 174 355 231 334
MonoSDF 347 361 210 1.05 237 138 141 185 174 110 146 228 125 144 145 1.86
NeuSurf 1.35 325 250 080 121 235 077 119 120 1.05 1.05 121 041 080 1.08 1.35
VolRecon [6]  3.05 445 336 3.09 278 3.68 301 287 3.07 255 307 277 159 344 251 3.02
UFORecon [5] 1.51 258 1.76 135 152 1.80 105 157 095 136 1.15 093 065 124 121 137
Ours 143 228 196 094 131 193 082 125 084 087 1.11 073 052 1.10 1.16 121
Table 3. Effect of adopting random set training strategy. We Table 5. Effect of normal loss.
present the mean chamfer distance on all testing scenes. (*)
indicates that the model adopts the random set training strategy. Method Favorable Unfavorable
Method Favorable Unfavorable wlo L, 0.98 1.38
w/ L, 0.95 1.30
VolRecon [6] 1.42 3.18
VolRecon* [6] 2.74 3.88
ReTR [4] 1.17 2.94 UFORecon across Favorable, Normal, and Unfavorable
ReTR* [4] 1.62 2.88 sets in Figure 2 and 3. We then provide more qualitative
UFORecon [5] 0.99 1.56 .resgl.ts on a: Var%;ty of s;en(?s from tlhe dBlendedMVS }(liataset
UFORecon* [5] 1.01 1.28 n Figure 1. e qualitative results demonstrate that our
method can produce more accuracy and complete surface
GSRecon (ours) 0.95 1.30 than other methods under various view combinations across
GSRecon* (ours) 0.97 1.16 different scenarios.

Table 4. Impact of the number of input views.

3. Limitation

Number of views VolRecon UFORecon Ours Our method construct§ a cost vo}ume for each vievy, o)
the memory overhead increases with the number of views,
2 172 L.15 L.15 which makes it unable to perform reconstruction from dense
3 1.38 1.00 0.95 views. A feasible approach to tackle this issue is to perform
4 1.35 0.97 0.94 progressive reconstruction, similar to [7].
5 1.33 0.96 0.93

2.6. More Qualitative Results

We provide additional visual comparisons to demonstrate
the superiority of our method. Since UFORecon is the first
paper focusing on large baseline viewpoint reconstruction,
we show a qualitative comparison between our method and
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Figure 1. More qualitative comparison of different methods using
3 unfavorable views on BlendedMVS dataset.
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Figure 2. Reconstruction results across various view-combination sets.
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Figure 3. Reconstruction results across various view-combination sets.
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