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1. Preliminary

In this paper, we address the multi-view clustering task in
scenarios with partial alignment. The raw features from dif-
ferent views represent various descriptions of the same sam-
ple. Therefore, in this setting, we consider the aligned data
as the variant feature for the same sample cross different
views. For a given dataset {z(*)}Y_,, we randomly spit the
dataset into two partitions with 50% ratio, i.e., the aligned
data and unaligned data. Let x,, and x;,, denote the vari-
ant and invariant features, respectively. Here, we consider
the unaligned data as the shift phenomenon compared with
the aligned scenario, which is denoted as /.. The invari-
ant features w;;, are obtained by the encoder network F.).
Then, we obtain the extracted variant representations e,
and invariant representations e;,, by the encoder networks
Gp, and Gy,. Moreover, we define the clustering results as
r. The fundamental notations used in this paper are outlined
in Tab. 1.

2. Related Work

2.1. Multi-view Clustering

Recently, Multi-view Clustering (MVC) has garnered sig-
nificant attention [4, 10, 15, 18, 25, 30, 34]. Existing MVC
methods can be broadly categorized into two groups based
on cross-view correspondence: MVC with fully aligned
data and MVC with partially aligned data. Fully aligned
data implies predefined mapping relationships for every pair
of cross-view data. There are several works under this as-
sumption, which can be encompassed in five main cate-
gories: (1) Non-negative matrix factorization-based MVC
[19] aims to identify a shared latent factor, which is used
to process information from multi-view input. (2) Kernel
learning-based MVC [11, 12] involves predefining a base
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Notation Meaning
Tya Fully Aligned Variant Features
Tin Invariant Features
xl ., Partially Aligned Variant Features
€va Extracted Variant Representations
€in Extracted Invariant Representations
r Clustering Results
Fs(+) Variantional Auto-Encoder Network
Go() Post-Intervention Inference Network
\% The Number of Views
N The Number of Samples
Z The Similarity Matrix

Table 1. Basic notations used in the whole paper.

kernels set for each views. After that, this method opti-
mally fuse the weights of the kernels to improve cluster-
ing outcomes. (3) Subspace-based MVC [9] is based on
the assumption that all views in the multi-view task share
a low-dimensional latent space, with the final outcomes de-
rived from learning this shared representation. (4) Benefit-
ing from the successful of graph learning and its applica-
tions [13, 14, 21, 24,26-29, 31, 32], Graph-based MVC [8]
seeks to constructing a unified graph from multiple views,
with clustering results derived from spectral decomposi-
tion. (5) Thanks to the robust representational capabilities
of deep networks, deep neural network-based MVC [6, 25]
has the capacity to extract more sophisticated representa-
tions. through neural networks. Despite achieving promis-
ing clustering performance, most of these methods heav-
ily rely on the assumption that cross-view data are fully
aligned.

To tackle this issue, many MVC algorithms have been
proposed [5, 20, 22, 23]. PVC is designed to use a dif-
ferentiable surrogate of the non-differentiable Hungarian
algorithm to learn the correspondence of partially aligned



data. MVC-UM [33], based on non-negative matrix fac-
torization, learns the correspondence by exploring cross-
view relationships. SURE [23] uses available pairs as pos-
itives and randomly selects some cross-view samples as
negatives. UPMGC-SM [20] leverages structural informa-
tion from each view to refine cross-view correspondences.
In contrast to the above methods, we approach partially
aligned data from a causal perspective, aiming to improve
the generalization of the model.

2.2. Causal Disentangled Representation Learning

Traditional approaches for disentangled representation
learning focus on examining mutually independent latent
factors through the use of encoder-decoder networks. In
this approach, a standard normal distribution is utilized as
the prior for the latent code. Moreover, the variational pos-
terior g(z|x) is employed to approximate the unknown pos-
terior p(z|x). S-VAE [3] introduces an adaptive framework
to adjust the weight of the KL term. Factor VAE [1] designs
a framework, which focuses solely on the independence of
factors. After that, the exploration of causal graphs from
observations has gained significant attention, leveraging ei-
ther purely observational data or a combination of obser-
vational and interventional data. NOTEARs [35] incorpo-
rates a novel Directed Acyclic Graph (DAG) constraint for
causal learning. LINGAM [16] ensures the identifiability of
the model based on the assumptions of linear relationships
and non-Gaussianity. In cases where interventions are fea-
sible, Heckerman et al. [2] demonstrate the causal structure
learned from interventional data can be identified. More re-
cently, there has been an increasing interest in combining
causality and disentangled representation. Suter et al. [17]
employs causality to explain disentangled latent represen-
tations, while Kocaoglu et al. [7] introduces CausalGAN,
a method supporting “do-operations” on images. Drawing
inspiration from the success of causal learning, we apply
causal modeling to multi-view clustering. To the best of our
knowledge, our work represents the first attempt to lever-
age causal learning to improve model generalization with
partially aligned data in the multi-view clustering task.

3. Detailed of CauMVC
3.1. Algorithm

Due to page limitations, we provide the algorithm table for
CauMVC in this section.

3.2. Datasets
3.3. Hyper-parameter Settings

To ensure reproducibility, we provide a summary of the
statistics and the hyper-parameter settings of our proposed
method in Tab. 2.

Algorithm 1 Inference Pipeline of CauMVC with Partially
Aligned Data
Input: The partially aligned data z/,,; the interation number I
Output: The clustering result r.

1: fori =1to I do
Obtain the invariant features x;, by F, .y with Eq. (10).
Encoder the representations el and e;n by G, and Gy, .
Obtain the post-intervention inference r with Eq. (11).
Calculate the ELBO loss, contrastive loss, and
reconstruction loss with Eq. (9), (13) and (14).
6:  Calculate the total loss £ by Eq. (15).
7:  Update model by minimizing £ with Adam optimizer.
8: end for
9: return r

4. Additional Experiments

4.1. Ablation Studies

In this section, we first present the ablation study on all
datasets under the partially aligned scenario. “(w/o) Cau”,
“(w/o) Con”, “(w/o) Cau&Con”, and “Ours” represent the
ablated models where the causal module, the contrastive
regularizer, and both modules combined, respectively, are
individually removed. In the “(w/0) Cau&Con” configura-
tion, we employ an autoencoder network as the backbone to
derive representations for the downstream clustering task.
Consistent with the conclusions drawn in the main text, the
results are summarized as follows.

* We resort the multi-view clustering from the causal per-
spective. The model generalization is improved when the
input is partially aligned data, thus achieving promising
performance.

* The contrastive module could push the positive sam-
ple close, and pull the negative sample away, enhanc-
ing the model’s discriminative capacity. The model could
achieve better clustering outcomes.

Besides, we perform ablation studies with fully aligned
data to assess the effectiveness of our designed mod-
ules, namely the causal module and contrastive regularizer.
Specifically, ’(w/o) Cau,” ’(w/0) Con,” ”(w/0) Cau&Con,”
and ”Ours” denote reduced models created by individually
omitting the causal module, the contrastive regularizer, and
both modules together. In this paper, we employ an autoen-
coder network as the core architecture to derive representa-
tions for the subsequent clustering task, referred to as ”’(w/o)
Cau&Con,”. The outcomes are depicted in Fig. 2. These re-
sults clearly demonstrate that the exclusion of any of the de-
signed modules leads to a significant decrease in clustering
performance, underscoring the essential role each module
plays in optimizing overall performance.



Dataset BBCSport Movies WebKB Reuters Caltech101-7 UCI-digit SUNRGB-D STL-10
Samples 544 617 1051 1200 1400 2000 10335 13000
Statistics Clusters 5 17 6 7 10 45 10
Views 2 2 5 5 3 3 4
e 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Hyper-parameters B8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Learning Rate 0.003 0.005 0.003 0.003 0.003 0.003 0.003 0.003

Table 2. Statistics and hyper-parameter settings of eight benchmark datasets.
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Figure 1. Ablation studies on eight datasets with partially aligned data. “(w/o) Cau”, “(w/o) Con”, “(w/o) Cau&Con”, and “Ours”
correspond to reduced models by individually removing the causal module, the contrastive regularizer, and all aforementioned modules

combined, respectively.

4.2. Different Align Ratio

To evaluate the performance of CauMVC under different
alignment ratios, we conduct experiments on eight datasets,
with the results presented in Fig. 3, Fig. 4, and Fig. 5. The
results clearly demonstrate that CauMVC outperforms other
baseline models across various alignment ratios in most sce-
narios. This highlights its strong generalization capability
in handling partially aligned data effectively.

4.3. Sensitivity Analysis of o and 3

To further investigate the impact of the parameters v and
B on our model, we conduct experiments on the BBC-
Sport dataset, analyzing parameter values within the range
of {0.01,0.1,1.0,10,100}. Due to space constraints, the
experimental results for the BBCSport dataset are provided
in the Appendix. Based on the results presented in Fig. 7,
we draw the following observations:

* When « and f3 are assigned extreme values (0.1 or 100),
the clustering performance tends to degrade. We hypothe-
size that this decline results from an imbalance in the loss
function. Moreover, the model achieves optimal perfor-
mance when the trade-off parameters are set around 1.0.

* The results also indicate that « has a more significant im-
pact on model performance, suggesting that the causal

model plays a crucial role in enhancing the overall effec-
tiveness of the approach.
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Figure 2. Ablation studies on eight datasets with fully aligned data. “(w/o) Cau”, “(w/o) Con”, “(w/0) Cau&Con”, and “Ours” correspond
to reduced models by individually removing the causal module, the contrastive regularizer, and all aforementioned modules combined,
respectively.
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Figure 3. Clustering performance on eight Datasets with different aligned ratios in accuracy metrics.
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