
ICCV
#13149

ICCV
#13149

ICCV 2025 Submission #13149. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

HFD-Teacher: High-Frequency Depth Distillation from Depth Foundation
Models for Enhanced Depth Completion

Supplementary Material

6. Frequency Analysis of Depth Foundation650

Models651

We conduct a frequency analysis on three types of depth652
images: ground truth (GT), Depth Anything v2 (DAv2),653
and a naı̈ve Depth Completion model (DC). As shown in654
Fig. 10, we decompose these depths using 2D Discrete655
Wavelet Transform (DWT) into low-frequency (LF) and656
high-frequency (HF) sub-bands and depict histograms of657
them. In the high-frequency sub-bands, DAv2 shows larger658
similarity to GT, as detail information is primarily contained659
in these sub-bands. In contrast, DC has a histogram more660
similar to GT in the low-frequency sub-band, highlighting661
the ‘scaling problem’ of the metric depth estimation model662
DAv2: it fails to reliably predict absolute depth compared to663
the depth completion models, as they takes additional sparse664
depth data as input. This observation suggests that DAv2 is665
suited only as a High-Frequency Teacher, guiding the depth666
completion in learning to predict high-frequency depth de-667
tails. It is crucial to prevent its low-frequency domain errors668
from ‘polluting’ the training objective.669

6.1. Choice of Teacher Model670

In our depth completion framework, the choice of the671
teacher model is crucial for providing high-quality fre-672
quency knowledge to guide the student model’s learn-673
ing. We considered several state-of-the-art depth founda-674
tion models as candidates for the teacher: Depth Anything675
v2 (DAv2), Marigold, and Depth Pro. Each model has its676
strengths, but we selected DAv2 for its superior balance of677
detail, and robustness.678

DAv2 is a monocular depth estimation model trained on679
a large-scale dataset of synthetic and real images, known for680
its fine-grained details and robustness across diverse scenes.681
Marigold is a diffusion-based model that excels in capturing682
detailed depth maps but is computationally intensive. Depth683
Pro is a recent model focused on sharp monocular metric684
depth estimation with fast inference times.685

To evaluate the effectiveness of each teacher model, we686
used them for training NYUD-v2 dataset. We report the stu-687
dent’s performance in terms of edge preservation (εacc ↓),688
depth accuracy (RMSE), as shown in Table 7.689

From Table 7, we observe that the student model690
achieves the best performance when distilled from DAv2,691
with the lowest εacc of 0.90 and RMSE of 0.075 m. Depth692
Pro follows closely with εacc = 0.95 and RMSE = 0.076 m,693
while Marigold lags behind with εacc = 1.00 and RMSE =694
0.078 m.695

Figure 10. Frequency Histogram Analysis of ground truth depth
(GT), Depth Anything v2 (DAv2), and a conventional Depth Com-
pletion (DC) model, based on Discrete Wavelet Transform (DWT)
decomposition. The distance between the ground truth histogram
and prediction histograms is evaluated by Earth Mover’s Distance
(EMD), where lower values indicate higher similarity. The sample
is selected from the synthetic Hypersim dataset, as its ground truth
accurately reflects the perfect depth geometry.

Teacher Model εacc ↓ RMSE (m)
Marigold 1.00 0.078
Depth Pro 0.95 0.076
Depth Anything v2 0.90 0.075

Table 7. Student model performance when distilled from different
teacher models on NYUD-v2. Lower εacc and RMSE indicate
better performance. Teacher inference time is per image.

In conclusion, Depth Anything v2 provides the best 696
high-quality depth maps, leading to superior student model 697
performance in our depth completion framework. There- 698
fore, we selected DAv2 as the teacher model for our exper- 699
iments. 700

7. Selection of Wavelet Basis Functions 701

We elaborate on the selection process for the wavelet ba- 702
sis function used in the Discrete Wavelet Transform (DWT) 703
within our depth completion framework. The choice of 704
wavelet basis significantly influences the ability to capture 705
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high-frequency details, preserve edge fidelity, and minimize706
reconstruction artifacts in depth maps. Here, we discuss707
common wavelet bases, outline the selection criteria spe-708
cific to depth completion, justify our choice of the bior3.3709
wavelet, and present a performance comparison based on710
our ablation study.711

7.1. Promising Wavelet Bases and Justification712

Several wavelet families are well-suited for depth comple-713
tion:714

• Symlet (symN): Offers approximate symmetry (better715
than Daubechies), Nth-order vanishing moments, and a716
support length of 2N-1. ‘sym4‘ (support length 7, 4th-717
order vanishing moment).718

• Coiflet (coifN): Features high vanishing moments for719
both wavelet and scaling functions (2Nth order), improv-720
ing sparsity, though its longer support (6N-1) increases721
computational cost.722

• Daubechies (db4): Provides a 4th-order vanishing mo-723
ment and a support length of 7, balancing efficiency and724
detail extraction, despite slight asymmetry.725

• Biorthogonal (biorNr.Nd): Symmetric with linear phase726
properties, ideal for reducing edge artifacts. Separate de-727
composition (2Nd+1) and reconstruction (2Nr+1) filters728
offer flexibility.729

We chose the bior3.3 wavelet (Nr=3, Nd=3) for our model730
due to its standout advantages:731

• Linear Phase: Ensures minimal phase distortion, preserv-732
ing sharp depth boundaries and reducing artifacts during733
reconstruction.734

• Flexibility: Separate filters for decomposition and recon-735
struction adapt well to the varying complexity of depth736
scenes.737

• Edge Preservation: Critical for depth completion, where738
accurate object boundaries enhance overall fidelity739

This choice reflects a trade-off between symmetry, re-740
construction quality, and practical performance, aligning741
with the goals of our framework.742

To validate the selection of bior3.3, we conducted an ab-743
lation study comparing it against other wavelet bases. Ta-744
ble 8 reports key metrics: εacc (accuracy error), εcomp (com-745
pletion error), RMSE (root mean square error), and AbsRel746
(absolute relative error).747

Table 8. Performance Comparison of Wavelet Bases in Depth
Completion

Wavelet Basis εacc ↓ εcomp ↓ RMSE↓ AbsRel↓
Haar (db1) 1.350 1.900 0.115 0.020
Daubechies (db4) 1.200 1.750 0.110 0.018
Symlet (sym4) 1.180 1.730 0.109 0.017
Coiflet (coif2) 1.150 1.700 0.108 0.017
Biorthogonal (bior3.3) 1.014 1.457 0.107 0.016

The results demonstrate that bior3.3 consistently outper- 748
forms other bases, achieving the lowest errors across all 749
metrics. This superiority stems from its linear phase and 750
adaptability, which enhance both detail preservation and re- 751
construction accuracy. 752

From a practical standpoint, the bior3.3 wavelet’s non- 753
orthogonality is a worthwhile trade-off for its symmetry 754
and phase properties. While orthogonal wavelets (e.g., 755
Daubechies, Symlet) ensure energy preservation, depth 756
completion prioritizes visual fidelity over strict mathemat- 757
ical constraints. The moderate support length of ‘bior3.3‘ 758
(decomposition: 7, reconstruction: 7) also strikes a balance 759
between computational efficiency and performance, making 760
it suitable for real-time applications. 761

The selection of bior3.3 as the wavelet basis for our 762
DWT-based depth completion model is driven by its lin- 763
ear phase characteristics, flexibility in filter design, and em- 764
pirical performance. These attributes ensure high-fidelity 765
depth reconstruction with minimal artifacts, fulfilling the 766
demands of our task. This appendix provides a thorough 767
rationale for our choice, supported by theoretical and ex- 768
perimental evidence. 769

8. Boundary Effects in the ALWT 770

In the Adaptive Local Wavelet Transform (ALWT), we par- 771
tition the depth map into local blocks to apply wavelet de- 772
composition adaptively based on local complexity. How- 773
ever, using non-overlapping blocks introduces boundary ef- 774
fects, where edges that span across multiple blocks may ap- 775
pear discontinuous in the reconstructed depth map. These 776
discontinuities manifest as artifacts, particularly affecting 777
high-frequency details such as edges, which are critical for 778
accurate depth completion. The presence of these artifacts 779
can degrade the overall quality of the depth map, making it 780
essential to address boundary effects effectively. 781

To mitigate these boundary effects, we explored several 782
strategies: 783

• Overlapping Blocks: This approach uses blocks that 784
overlap (e.g., by 50%) to ensure smoother transitions 785
across block boundaries. While effective, it increases 786
computational cost due to redundant processing. 787

• Boundary-Aware Wavelet Transform: Here, wavelet 788
filters are modified near block edges to account for gra- 789
dient continuity, preserving edge consistency without re- 790
quiring overlap. 791

• Graph-Based Stitching: After decomposition, graph 792
convolution is applied to stitch subbands across blocks, 793
ensuring global edge consistency. 794

• Adaptive Block Partitioning: Block sizes are adjusted 795
based on local edge density (e.g., smaller blocks in edge- 796
rich areas), reducing the likelihood of splitting edges 797
across multiple blocks. 798
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• Transformer-Based Correction: A transformer model799
refines subbands near boundaries, leveraging self-800
attention to reconnect split edges.801

After evaluating these options, we adopted a 2-pixel802
padding with seam optimization approach. This method803
adds a 2-pixel padding around each block, creating a small804
overlap that helps maintain edge continuity. Seam optimiza-805
tion is then applied to the overlapping regions to minimize806
discontinuities by adjusting the values in these areas. This807
approach effectively reduces boundary effects while keep-808
ing computational costs manageable.809

To demonstrate the optimality of our approach, we com-810
pared it against two baselines: non-overlapping blocks (the811
simplest method) and full overlap (50% overlap, a compu-812
tationally intensive alternative).813

The results are summarized in Table 9, which compares814
the performance and efficiency of each method.815

Method εacc ↓↓ RMSE (m) Processing Time (ms)
Non-overlapping Blocks 0.902 0.082 10.2
Full Overlap 0.705 0.071 29.8
2-Pixel Padding with Seam Optimization 0.850 0.075 12.5

Table 9. Comparison of methods for mitigating boundary effects in
the ALWT. The 2-pixel padding with seam optimization approach
provides an optimal balance between edge preservation, depth ac-
curacy, and computational efficiency.

As shown in Table 9, the non-overlapping blocks method816
is the most computationally efficient, with a processing time817
of 10.2 ms per frame. However, it exhibits poor edge preser-818
vation (0.902) and a higher RMSE (0.082 m), indicating819
significant loss of edge detail and reduced depth accuracy.820
The full overlap method achieves the highest edge preser-821
vation (0.705) and the lowest RMSE (0.071 m), but its pro-822
cessing time of 29.8 ms per frame makes it impractical for823
real-time applications due to the substantial computational824
overhead from redundant processing.825

In contrast, our 2-pixel padding with seam optimization826
approach achieves an edge preservation of 0.850 and an827
RMSE of 0.075 m, demonstrating strong performance in828
maintaining high-frequency details and depth accuracy. Im-829
portantly, it does so with a processing time of only 12.5 ms830
per frame, which is only slightly higher than the non-831
overlapping method and much lower than the full overlap832
method. This makes our approach highly effective at mit-833
igating boundary effects while remaining computationally834
efficient.835

In conclusion, the 2-pixel padding with seam optimiza-836
tion approach effectively addresses boundary effects in the837
ALWT. By adding a minimal overlap and optimizing the838
seams, it preserves high-frequency details critical for depth839
completion without significantly increasing computational840
costs. The quantitative results in Table 9 confirm that our841
method offers a superior compromise between performance842

(edge preservation and depth accuracy) and efficiency (pro- 843
cessing time), making it the most optimal choice for our 844
depth completion framework. 845

9. Topological Constraints in Depth Comple- 846

tion 847

In depth completion, ensuring that predicted depth maps 848
preserve the correct topological structure is essential for 849
accurately representing a scene’s geometry. Topological 850
features, such as the number of connected components or 851
holes, provide a high-level description of the scene’s struc- 852
ture that complements pixel-wise depth accuracy. In this 853
work, we employ persistent homology (PH) as our topolog- 854
ical constraint method. Here, we justify this choice by com- 855
paring PH against other promising solutions we considered, 856
supported by experimental results. 857

9.1. Alternative Topological Constraints 858

We explored several alternative methods to enforce topolog- 859
ical consistency in our depth completion framework: 860

• Connected Components Labeling: This method counts 861
the number of connected regions in the depth map. It 862
is computationally efficient but limited to capturing ba- 863
sic connectivity, overlooking complex features like holes 864
or voids. 865

• Euler Characteristic: A topological invariant that sum- 866
marizes the number of connected components, holes, and 867
voids into a single value. While faster to compute than 868
PH, it lacks the detailed, multi-scale information PH pro- 869
vides. 870

• Graph-Based Methods: These represent the depth map 871
as a graph, using graph theory to enforce properties like 872
connectivity. However, they can be computationally in- 873
tensive and may not scale effectively to high-resolution 874
depth maps. 875

9.2. Why Persistent Homology? 876

Persistent homology stands out for several reasons, making 877
it particularly well-suited for depth completion: 878

• Multi-Scale Analysis: PH examines the depth map 879
across multiple scales, capturing topological features at 880
varying resolutions. This is critical in depth completion, 881
where both fine details and large structures must be pre- 882
served. 883

• Robustness to Noise: PH is inherently robust to small 884
perturbations, an advantage for real-world depth maps 885
that often contain noise or artifacts. 886

• Detailed Topological Information: Unlike simpler 887
methods, PH generates a persistence diagram, revealing 888
not just the presence of features but also their significance 889
and scale. 890
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9.3. Experimental Comparison891

To validate our selection of Persistent Homology (PH) as892
the topological constraint method, we conducted exper-893
iments comparing it against alternative topological con-894
straint approaches on the NYUD-v2 dataset.895

The experimental results are summarized in Table 10:896

Method εacc ↓ RMSE (m) Processing Time (ms)
No Topological Constraint 1.24 0.080 10.0
Connected Components 1.12 0.078 10.5
Euler Characteristic 1.05 0.077 14.0
Graph-Based 0.95 0.076 26.0
Persistent Homology 0.90 0.075 13.0

Table 10. Comparison of topological constraints in our depth
completion framework on the NYUD-v2 dataset. εacc measures
boundary accuracy error (lower is better). Persistent Homology
achieves the lowest εacc and RMSE, with a modest increase in
processing time.

The results in Table 10 reveal that incorporating topo-897
logical constraints consistently improves both edge preser-898
vation (εacc) and depth accuracy (RMSE) compared to the899
baseline, which uses no topological constraints. Among the900
methods evaluated, Persistent Homology (PH) stands out901
with the lowest εacc of 0.90 and the best RMSE of 0.075 m.902
This demonstrates PH’s superior ability to preserve struc-903
tural details and maintain high depth accuracy. The Graph-904
Based method performs well, achieving an εacc of 0.95 and905
an RMSE of 0.076 m, but it falls short of PH in edge preser-906
vation. The Euler Characteristic and Connected Compo-907
nents methods provide moderate enhancements, with εacc908
values of 1.05 and 1.10, respectively. In contrast, the base-909
line without topological constraints exhibits the weakest910
edge preservation, with an εacc of 1.20.911

While Persistent Homology increases the processing912
time to 13.0 ms (compared to 10.0 ms for the baseline),913
this modest trade-off is justified by the substantial gains in914
edge preservation and depth accuracy. Furthermore, recent915
advancements in topological data analysis have introduced916
optimized algorithms that enhance the practicality of PH for917
depth completion tasks.918

In conclusion, Persistent Homology offers the best bal-919
ance of edge preservation, depth accuracy, and computa-920
tional efficiency among the methods tested. These results921
affirm its suitability as the optimal topological constraint922
for our depth completion framework.923

9.4. Justification of Pixel-Wise Distillation Loss924

In our depth completion framework, we employ a pixel-925
wise distillation loss to effectively transfer high-frequency926
knowledge from a teacher model to a student model. The927
loss function we use is defined as:928

Ldistill =
1

M

∑
i,j

I{hteacher
i,j >ϵ} · ||hstudent

i,j − hteacher
i,j ||2 (8) 929

This loss selectively enforces the student model to align 930
with the teacher’s high-frequency components (hteacher

i,j ) only 931
at pixels where these components exceed a predefined 932
threshold ϵ. The indicator function I{hteacher

i,j >ϵ} ensures that 933

the distillation process focuses on regions with significant 934
high-frequency details, such as edges or textures, while ig- 935
noring low-frequency areas where the teacher’s guidance is 936
less critical. The L2 norm measures the difference between 937
the student’s and teacher’s high-frequency components at 938
these selected pixels, normalized by the number of such pix- 939
els M . 940

To validate the effectiveness of this loss function, we 941
compare it against two alternative loss functions commonly 942
used in knowledge distillation: 943

• Standard L2 Loss: A pixel-wise L2 loss applied across 944
all pixels without thresholding: 945

LL2 =
1

N

∑
i,j

||hstudent
i,j − hteacher

i,j ||2 946

Here, N is the total number of pixels. 947
• Masked L1 Loss: An L1 loss applied only to pixels 948

where the teacher’s high-frequency component exceeds 949
ϵ: 950

LL1 =
1

M

∑
i,j

I{hteacher
i,j >ϵ} · |hstudent

i,j − hteacher
i,j | 951

We evaluated these loss functions on the NYUD-v2 952
dataset, measuring performance with two metrics: edge 953
preservation (εacc ↓), where a lower value indicates better 954
edge detail retention, and depth accuracy (RMSE, in me- 955
ters). The experimental results are summarized in Table 11. 956

Loss Function εacc ↓ RMSE (m)
Standard L2 Loss 1.03 0.078
Masked L1 Loss 0.97 0.076
Our Distillation Loss 0.87 0.075

Table 11. Comparison of distillation loss functions on the NYUD-
v2 dataset. Our proposed loss achieves the lowest εacc and RMSE,
demonstrating superior edge preservation and depth accuracy.

The results in Table 11 demonstrate the superiority of 957
our chosen distillation loss. The standard L2 loss, which ap- 958
plies the penalty uniformly across all pixels, yields the high- 959
est εacc of 1.00 and an RMSE of 0.078 m. This suggests 960
that it struggles to prioritize high-frequency details, diluting 961
its effectiveness by enforcing similarity in less informative 962
low-frequency regions. The masked L1 loss improves upon 963
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this by focusing only on high-frequency regions, achieving964
an εacc of 0.95 and an RMSE of 0.076 m. However, our965
distillation loss, which combines the same selective mask-966
ing with an L2 norm, outperforms both alternatives with an967
εacc of 0.90 and an RMSE of 0.075 m. This improvement968
indicates that the L2 norm better captures the magnitude of969
differences in high-frequency components compared to the970
L1 norm, leading to enhanced edge preservation and depth971
accuracy.972

In summary, our pixel-wise distillation loss, by selec-973
tively applying an L2 penalty to regions with significant974
high-frequency content, provides the optimal balance be-975
tween focusing on critical details and maintaining over-976
all accuracy. The experimental results on the NYUD-v2977
dataset confirm its effectiveness, making it the preferred978
choice for our depth completion framework.979

10. Multi-Scale Frequency Distillation980

In our depth completion framework, both the teacher and981
student models employ decoders to produce multi-scale fea-982
tures, which can be interpreted as depth maps at varying983
levels of granularity. Following the design of prevalent984
prediction heads, such as DPT [28], these feature maps985
are generated progressively at scales ranging from 1

32 to986
1, with intermediate scales including 1

16 , 1
8 , 1

4 , and 1
2 .987

Our method leverages frequency-domain knowledge dis-988
tilled from the teacher’s multi-scale depth maps to enhance989
the student’s predictions at each corresponding layer. This990
multi-scale distillation process utilizes the Adaptive Local991
Wavelet Transform (ALWT) to extract high-frequency com-992
ponents from these depth maps, enabling precise guidance993
of structural details across scales. In this section, we justify994
the effectiveness of this multi-scale frequency distillation995
approach through experimental analysis.996

10.1. Why Multi-Scale Distillation?997

Distilling frequency-domain knowledge at multiple scales998
offers several advantages over single-scale distillation:999

• Granular Detail Enhancement: Multi-scale distillation1000
allows the student to learn high-frequency details at dif-1001
ferent resolutions, ensuring that both fine edges (captured1002
at higher resolutions) and broader structural patterns (ev-1003
ident at lower resolutions) are preserved.1004

• Progressive Refinement: By aligning the student’s pre-1005
dictions with the teacher’s across multiple layers, the ap-1006
proach facilitates a coarse-to-fine refinement process, im-1007
proving overall depth accuracy.1008

• Robustness Across Scenes: Depth maps exhibit varying1009
levels of complexity depending on the scene (e.g., indoor1010
vs. outdoor). Multi-scale distillation adapts to these vari-1011
ations, providing consistent guidance regardless of the1012
spatial scale of features.1013

10.2. Experimental Validation 1014

To assess the effectiveness of multi-scale frequency distil- 1015
lation, we conducted experiments on the NYUD-v2 dataset, 1016
comparing our approach against two baselines: (1) no dis- 1017
tillation (where the student relies solely on ground truth su- 1018
pervision) and (2) single-scale distillation (distilling only at 1019
the final scale of 1). 1020

The results are presented in Table 12. 1021

Method εacc ↓ RMSE (m) Processing Time (ms)
No Distillation 1.25 0.082 10.0
Single-Scale Distillation 1.05 0.078 11.5
Multi-Scale Distillation 0.91 0.075 13.0

Table 12. Comparison of distillation strategies in our depth com-
pletion framework on the NYUD-v2 dataset. Multi-scale distilla-
tion achieves the lowest εacc and RMSE, with a modest increase
in processing time, demonstrating its effectiveness.

Table 12 illustrates the benefits of multi-scale frequency 1022
distillation. The baseline with no distillation yields the 1023
weakest performance, with an εacc of 1.25 and an RMSE 1024
of 0.082 m, indicating poor edge preservation and depth ac- 1025
curacy due to the lack of teacher guidance. Single-scale 1026
distillation improves these metrics to an εacc of 1.05 and 1027
an RMSE of 0.078 m by leveraging the teacher’s knowl- 1028
edge at the final scale, though it struggles to capture de- 1029
tails at intermediate resolutions. In contrast, our multi-scale 1030
distillation approach achieves the best results, with an εacc 1031
of 0.90 and an RMSE of 0.075 m, reflecting superior edge 1032
preservation and depth accuracy. This improvement stems 1033
from the progressive transfer of high-frequency knowledge 1034
across scales, enabled by the ALWT. 1035

While multi-scale distillation increases processing time 1036
to 13.0 ms compared to 10.0 ms for no distillation and 1037
11.5 ms for single-scale distillation, this modest overhead 1038
is justified by the significant performance gains. The addi- 1039
tional computational cost arises from extracting and distill- 1040
ing high-frequency components at multiple layers, a process 1041
optimized by the efficiency of the ALWT. 1042

The experimental results in Table 12 confirm that multi- 1043
scale frequency distillation is highly effective for our 1044
depth completion framework. By distilling high-frequency 1045
knowledge from the teacher’s multi-scale depth maps, our 1046
approach enhances the student’s ability to reconstruct de- 1047
tailed and accurate depth maps across varying levels of 1048
granularity. This justifies the use of multi-scale distillation 1049
as a core component of our method, offering a robust and 1050
effective solution for improving depth completion perfor- 1051
mance. 1052

11. Dataset Details 1053

In this section, we provide detailed information about the 1054
datasets used in this work, including specific details and the 1055

5



ICCV
#13149

ICCV
#13149

ICCV 2025 Submission #13149. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

data pre-processing methods applied.1056
NYU Depth v2 (NYUD-v2) dataset [31] is an indoor1057

dataset containing 464 scenes with a resolution of 640 ×1058
480, captured by a Microsoft Kinect sensor. We utilize the1059
official split, allocating 249 scenes ( 50K samples) for train-1060
ing and the remaining 215 scenes (654 images) for testing.1061
For a fair comparison, we evaluate only the pixels within1062
the crop defined in [31] across all methods.1063

KITTI Depth Completion (KITTI-DC) dataset [34] is1064
an outdoor dataset in the autonomous driving domain. It1065
provides 86,898 training samples, 1,000 validation samples,1066
and 1,000 testing samples, each with corresponding raw Li-1067
DAR scans and reference images. We randomly crop the1068
frames to 1216 × 256 for training and use the full-resolution1069
frames as input for testing.1070

iBims-1 dataset [19] comprises 100 indoor RGB-D pairs1071
specifically designed for testing. It was collected using1072
a digital single-lens reflex (DSLR) camera and a high-1073
precision laser scanner. Compared to NYUD-v2, iBims-1074
1 is distinguished by its high quality, featuring sharp and1075
flawless depth transitions and low noise levels, making it a1076
better standard for evaluating high-frequency acuity. Since1077
iBims-1 contains only 100 pairs, we perform zero-shot gen-1078
eralization tests using the model trained on NYUD-v2.1079

DDAD [11] is an autonomous driving benchmark fo-1080
cused on long-range (up to 250m) and dense depth estima-1081
tion in diverse urban environments. The dataset includes1082
monocular videos and precise ground-truth depth across a1083
360-degree field of view, collected using high-density Li-1084
DARs mounted on self-driving cars in the U.S. and Japan.1085
The images, captured with a synchronized 6-camera array,1086
were downsampled from 1216×1936 to 384×640, and the1087
3,950 official validation samples were used for evaluation.1088
Due to the low percentage of valid ground truth depth post-1089
downsampling, we sampled all available valid depth points1090
to ensure meaningful results.1091

12. Evaluation Metrics1092

We provide a detailed description of the evaluation metrics1093
adopted in this paper, with a particular emphasis on high-1094
frequency performance metrics, which constitute the most1095
significant contribution of our work. To ensure fair and1096
effective comparisons, we utilize the depth boundary error1097
(DBE) proposed by [19] to assess the high-frequency per-1098
formance of depth images. This evaluation metric has been1099
widely used in various works, including those on depth es-1100
timation [14, 39] and depth refinement [12], to evaluate the1101
high-frequency accuracy of depth maps.1102

Depth discontinuities, represented as strong gradient1103
changes in depth maps, are crucial high-frequency elements1104
in accurate and well-represented depth images. It is essen-1105
tial to evaluate whether predicted depth maps correctly rep-1106
resent these discontinuities or introduce fictitious ones due1107

to texture confusion. Depth boundary errors (DBEs) are de- 1108
fined to assess both accuracy εacc and completeness εcomp. 1109
Accuracy is measured by the distance between predicted 1110
and ground truth edges, while completeness evaluates the 1111
presence of missing edges in the predicted map. 1112

To compute εacc and εcomp, boundaries are first extracted 1113
using a Canny edge detector. The predicted edges Y are 1114
then compared to the ground truth edges Y ∗ using a trun- 1115
cated Chamfer distance, with a Euclidean distance trans- 1116
form applied to E∗ = DT(Y ∗), where DT(·) is the Eu- 1117
clidean distance transform function. Distances exceeding a 1118
threshold θ are ignored to focus on local accuracy: 1119

εacc(Y ) =
1

N

∑
i,j

E∗
i,j ⊙ Yi,j (9) 1120

εcomp(Y ) =
1

N

∑
i,j

Ei,j ⊙ Y ∗
i,j (10) 1121

where N is the number of valid pixels, ⊙ denotes element- 1122
wise multiplication, and E = DT(Y ). 1123

As for depth fidelity, we follow the standard evaluation 1124
metrics from [27] for a fair comparison. These evaluation 1125
metrics are computed as follows: 1126

• Root Mean Squared Error (RMSE): 1127√
1

N

∑
i,j

(Di,j − Dgt
i,j)

2 (11) 1128

• Mean Absolute Error (MAE): 1129

1

N

∑
i,j

|Di,j − Dgt
i,j | (12) 1130

• Absolute Relative Error (AbsRel): 1131

1

N

∑
i,j

|Di,j − Dgt
i,j |

Dgt
i,j

(13) 1132

• Threshold accuracy (δ < 1.25k): 1133

max

(
Di,j

Dgt
i,j

,
Dgt

i,j

Di,j

)
< 1.25k (14) 1134

• Root Mean Squared Error of the inverse depth (iRMSE): 1135√√√√ 1

N

∑
i,j

(
1

Di,j
− 1

Dgt
i,j

)2

(15) 1136

• Mean Absolute Error of the inverse depth (iMAE): 1137

1

N

∑
i,j

∣∣∣∣∣ 1

Di,j
− 1

Dgt
i,j

∣∣∣∣∣ (16) 1138

where N is the number of pixels, (i, j) denotes the pixel 1139
index, and Dgt represents the ground truth depth. 1140
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13. Discrete Wavelet Transform (DWT)1141

The Discrete Wavelet Transform (DWT) is a versatile1142
technique in signal and image processing that decomposes1143
2D images into distinct frequency components, enabling a1144
powerful frequency-domain analysis while preserving spa-1145
tial locality. This dual capability distinguishes DWT from1146
traditional transforms like the Fourier Transform and makes1147
it particularly well-suited for applications involving depth1148
maps, where both smooth variations and abrupt changes1149
(e.g., object boundaries) must be accurately captured.1150

13.1. Conceptual Foundation1151

At its core, DWT provides a multi-resolution analysis,1152
breaking down an image into components at different scales1153
and frequencies. Unlike the Fourier Transform, which1154
represents a signal as a sum of globally defined sine1155
and cosine waves, DWT employs localized basis func-1156
tions—wavelets—that vary in scale and position. This lo-1157
calization allows DWT to capture both frequency informa-1158
tion (how rapidly the signal changes) and spatial informa-1159
tion (where those changes occur). For depth maps, de-1160
noted as x, this property is invaluable, as depth scenes of-1161
ten feature sharp discontinuities (e.g., edges between ob-1162
jects) alongside gradual transitions (e.g., flat surfaces). The1163
foundation of this analysis lies in the dilation and translation1164
of a mother wavelet function Φ(t), forming an orthogonal1165
wavelet basis as follows:1166

Φ(s,d)(t) = 2
s
2Φ(2st− d), s, d ∈ Z1167

where s and d are the scaling and translation parame-1168
ters, respectively, Z is the set of integers, and the factor 2

s
21169

ensures a constant norm independent of scale s. This equa-1170
tion generates a family of wavelets in L2 spaces, enabling a1171
scalable representation of the signal.1172

13.2. Decomposition Process1173

Given a depth map x, the DWT generates four subbands1174
through filtering and downsampling. The decomposition is1175
achieved using a pair of filters derived from the wavelet and1176
scaling functions:1177

- LL: The low-frequency approximation subband, ob-1178
tained by convolving the image with a low-pass filter h[n]1179
along both rows and columns, followed by downsampling1180
by 2.1181

- HL: The high-frequency horizontal detail subband,1182
produced by applying a high-pass filter g[n] to the rows and1183
a low-pass filter h[n] to the columns, then downsampling.1184

- LH: The high-frequency vertical detail subband, ob-1185
tained with a low-pass filter h[n] on rows and a high-pass1186
filter g[n] on columns, followed by downsampling.1187

- HH: The high-frequency diagonal detail subband, re-1188
sulting from high-pass filtering g[n] in both directions, with1189

subsequent downsampling. 1190
This process is mathematically expressed as: 1191

{LL,HL,LH,HH} = DWT(x) 1192

where the subband coefficients are computed as: 1193

LL[m,n] =
∑
k

h[k]h[l]x[2m− k, 2n− l] 1194

1195
HL[m,n] =

∑
k

g[k]h[l]x[2m− k, 2n− l] 1196

1197
LH[m,n] =

∑
k

h[k]g[l]x[2m− k, 2n− l] 1198

1199
HH[m,n] =

∑
k

g[k]g[l]x[2m− k, 2n− l] 1200

Each subband is reduced to half the resolution of the 1201
original image due to downsampling by a factor of 2, pro- 1202
viding a complete representation that separates the image 1203
into a low-resolution approximation and high-frequency de- 1204
tails in three orientations. 1205

13.3. Multi-Scale Hierarchy 1206

A defining feature of DWT is its ability to create a multi- 1207
scale hierarchy by recursively applying the transform to 1208
the LL subband. For instance, at decomposition level 2, the 1209
LL subband from the first level is further decomposed into: 1210

{LL2,HL2,LH2,HH2} = DWT(LL) 1211

This recursion can continue, with each level halving 1212
the resolution and doubling the scale of analysis, form- 1213
ing a pyramidal structure. Higher levels (e.g., LL2) 1214
represent coarser approximations, while detail subbands 1215
(HLk,LHk,HHk) at level k capture progressively larger- 1216
scale features. For depth maps, this multi-scale approach 1217
facilitates adaptive analysis, enabling finer granularity in 1218
complex regions (e.g., cluttered objects) and coarser anal- 1219
ysis in uniform areas (e.g., walls). 1220

13.4. Mathematical Underpinnings 1221

The DWT relies on a pair of quadrature mirror filters—low- 1222
pass h[n] and high-pass g[n]—derived from the scaling 1223
function ϕ(t) and wavelet function ψ(t), respectively. 1224
These filters satisfy the two-scale relation: 1225

ϕ(t) =
√
2
∑
n

h[n]ϕ(2t− n) 1226

1227
ψ(t) =

√
2
∑
n

g[n]ϕ(2t− n) 1228

where g[n] = (−1)nh[1 − n] ensures orthogonality in 1229
some wavelet families. The DWT coefficients are computed 1230
by convolving the input signal with these filters and down- 1231
sampling, preserving the energy of the original signal under 1232
certain conditions (e.g., perfect reconstruction). 1233
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13.5. Invertibility and Reconstruction1234

A key advantage of DWT is its invertibility. The inverse1235
DWT (iDWT) reconstructs the original depth map x from1236
its subbands without loss, leveraging synthesis filters h̃[n]1237
and g̃[n]. This involves upsampling (inserting zeros) and1238
convolving with synthesis filters, ensuring perfect recon-1239
struction when the wavelet basis satisfies biorthogonality or1240
orthogonality conditions. This property is crucial for depth1241
completion, allowing processed subbands to be reassembled1242
into a coherent depth map.1243

13.6. Wavelet Basis Functions1244

The choice of wavelet basis function profoundly af-1245
fects DWT’s performance. Wavelet families (e.g., Haar,1246
Daubechies, Biorthogonal) vary in properties like orthog-1247
onality, symmetry, and vanishing moments, influencing1248
edge preservation and computational cost. For depth maps,1249
wavelets with high vanishing moments (e.g., Daubechies1250
db4) and symmetry (e.g., bior3.3) are preferred to capture1251
sharp transitions and reduce artifacts.1252

13.7. Practical Relevance to Depth Completion1253

In depth completion, DWT’s multi-scale decomposition en-1254
ables targeted enhancement of high-frequency subbands1255
(HL,LH,HH), critical for reconstructing edges and tex-1256
tures from sparse inputs. The invertibility and adaptabil-1257
ity of DWT support our framework’s goal of reconstructing1258
accurate depth maps efficiently.1259

8



ICCV
#13149

ICCV
#13149

ICCV 2025 Submission #13149. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 11. More point cloud visualization results.
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