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InstaDrive: Instance-Aware Driving World Models for Realistic and Consistent
Video Generation

Supplementary Material

1. More Experimental Details

We provide a project page for additional video results:
https://github.com/InstaDrive.

1.1. Training Details

Our method is implemented based on OpenSora [7]. Ini-
tially, we train for 20k iterations on the front-view videos
from the NuScenes training set. Next, to adapt to multi-
view positional encoding, we froze the backbone and fine-
tuned the patch embedder for 2k iterations. Finally, we
added all the control modules and trained the entire model
for 100k iterations with a mini-batch size of 1. All training
inputs were set to 16x256x448 and performed on 8 A100
GPUs. Additionally, during training, we set a 0.2 proba-
bility of not adding noise to the first frame and assigned a
timestep of 0 to the first frame, enabling the model to have
image-to-video generation capability. As a result, during
testing, the model can autoregressively iterate. Experimen-
tal results show that our method can stably generate over
200 frames.

1.2. Perception Evaluation Details

In Tab. ??, StreamPETR was re-implemented from official
config due to resolution differences with Panacea. Stronger
baselines are harder to surpass, further highlighting our
data’s effectiveness.

2. More Quantitative Results

2.1. Evaluation on Planning Task.

We also assess our model in the planning task in au-
tonomous driving. A high-quality planning system not only
perceives the current environment but also maintains sta-
ble temporal understanding of dynamic objects (e.g., pedes-
trians, vehicles) to generate smooth and safe trajectories.
Therefore, planning task performance serves as a compre-
hensive measure of both instance-level temporal consis-
tency and spatial geometric fidelity.

To validate our approach, we evaluate the generated
nuScenes validation data using pretrained planning model
UniAD [4] in Tab. 1. The L2 loss and collision rates closely
match the performance of the original data, demonstrating
clear benefits from improved temporal consistency and spa-
tial fidelity.

Eval Data L2(m)↓ Col. Rate↓
1s 2s 3s Avg. 1s 2s 3s Avg.

Oracle 0.48 0.96 1.65 1.03 0.0005 0.0017 0.0071 0.0031
InstaDrive 0.67 1.54 2.69 1.63 0.0033 0.0095 0.0189 0.0105

Table 1. Comparison on planning task using the pre-trained
planning model UniAD [4]. We resize all generated images to
900×1600 to ensure a unified evaluation standard. The L2 loss
and collision rates closely match the performance of the original
data, highlighting the benefits of enhanced temporal consistency
and spatial fidelity.

2.2. Ablation Study for SGA

We conduct ablation on the SGA module by gradually re-
moving its two components: depth injection and box pro-
jection. As shown in Tab. ??, removing both causes a large
drop of 3.20 in NDS and a big increase of 187 in IDS, con-
firming the importance of SGA module. Individually, re-
moving box projection leads to a larger NDS drop, while
removing depth injection results in more ID switches, indi-
cating their respective contributions to spatial localization
and temporal consistency.

2.3. Ablation Study in T2V Scenario

We also conduct an ablation study in the T2V scenario
to evaluate the effectiveness of two key modules—the In-
stance Flow Guider (IFG) module and the Spatial Geomet-
ric Aligner (SGA) module. The results are presented in
Tab.2.
Instance Flow Guider. To assess the impact of the IFG
module, we eliminate the instance flow injection. In the
T2V mode, where no guidance is provided from the first
frame, the IFG module plays a more critical role compared
to its role in the (T+I)2V mode. As shown in Tab.2, remov-
ing the instance flow injection leads to a significant degra-
dation, with the FVD score increasing by 46.81. This high-
lights the module’s importance in ensuring smooth and co-
herent video generation.
Spatial Geometric Aligner. To evaluate the influence of
the SGA module, we remove the injection of depth or-
der and replace the box projection with box coordinates
as the control signal. This ablation significantly impacts
the model’s ability to accurately localize objects and un-
derstand spatial relationships. As demonstrated in Tab.2,
the absence of the SGA module results in a notable perfor-
mance drop, further emphasizing its essential role in achiev-
ing high spatial fidelity.

https://metadrivescape.github.io/papers_project/InstaDrive/page.html
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(a) Objects track their attributes maintaining temporal consistency.
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(b) Small and densely packed objects rendered at correct locations.

Figure 1. Precise control mechanisms. We overlay the 3D bounding box projections onto the generated videos. The precision of control is
reflected in: (1) Objects in the scene are accurately placed and sized to align with their projected bounding boxes, as shown in 1a and 1b.
(2) Drivable areas, sidewalks, and zebra crossings are faithfully generated following the road map projections, as shown in 1a and 1b. (3)
Objects track their previous attributes as guided by the instance flow, ensuring temporal consistency across frames. As shown in Figure 1a,
the pink-rendered instance flow directs the model to generate the white sedan, maintaining its consistent attributes over time. (4) Small and
densely packed objects are precisely rendered at their correct locations, following 3D bounding box coordinates, as shown in 1b.
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Figure 2. Diverse videos using varying noise inputs and the same control conditions. By introducing stochastic noise while maintaining
consistent control signals—such as 3D bounding box coordinates, lane line projections, and instance flow—our model can produce a
variety of videos that adhere to the defined constraints.

Settings FVD↓ FID↓
InstaDrive 107.50 12.91
w/o Instance Flow Guider 154.31 (+46.81) 16.73 (+3.82)
w/o Spatial Geometric Aligner 117.25 (+9.75) 14.52 (+1.61)

Table 2. Ablation study results in T2V scenarios on the generated
nuScenes validation set.

3. More Visualization Results

Here, we provide additional visualization results to show-
case our model’s strong ability to generate high-fidelity,
realistic, and diverse multi-view driving videos. We sam-
ple 8 frames from each generated video as a demo to save
space in the paper. Our model is capable of generating high-
quality, long-duration driving videos through iterative pro-
cessing. We provide a web page in the supplementary ma-
terials for additional results. Please refer to the webpage in
the supplementary materials for visualization results.

3.1. Prompt Edit

InstaDrive enables video editing by modifying only the
text prompt condition while keeping all other conditions
fixed. In Fig.4 in main text, we demonstrate the model’s
editing capability by altering the weather and time of day in
the text prompt. Specifically, we add ”Sunny,” ”Rainy,” and

”Night” to the original text prompt, while maintaining other
conditions such as camera pose, 3D bounding box coordi-
nates, 3D bounding box projections, road map projections,
and instance flow unchanged. The generated videos show-
case high quality and effective editing:
• Sunny: Displays clear skies with sunlight shining on the

scene, reflecting bright and vivid environmental details.
• Rainy: Captures wet road surfaces and blurred camera

views caused by raindrops, adding realistic weather dy-
namics.

• Night: Depicts dimly lit scenes with streetlights and re-
duced visibility, accurately simulating nighttime driving
conditions.

These results emphasize the strong editing capability of In-
staDrive , producing diverse and realistic driving videos
with minimal changes to the input conditions.

3.2. Control Precision
InstaDrive excels at generating videos that adhere closely
to various control conditions, including 3D bounding box
projections, road map projections, depth order, and instance
flow. In Fig. 1, we overlay the 3D bounding box projections
onto the generated videos to illustrate the precision of our
control mechanisms. The precision of control is reflected
in:



• Object alignment with bounding box projections: Ob-
jects in the scene are accurately placed and sized to align
with their projected bounding boxes, as shown in Fig. 1
(a)(b).

• Road and pedestrian area fidelity: Drivable areas, side-
walks, and zebra crossings are faithfully generated fol-
lowing the road map projections, as shown in Fig. 1
(a)(b).

• Precision in dense and small objects: Small and densely
packed objects are precisely rendered at their correct lo-
cations, as shown in Fig. 1 (b).

• Temporal consistency through instance flow: Objects
track their previous attributes as dictated by the instance
flow, enabling consistent temporal consistency across
frames, as shown in Fig. 1 (a).

These results highlight the superior control and fidelity of
InstaDrive in generating realistic and controllable driving
videos.

3.3. Carla-Generated Layout Control
InstaDrive demonstrates the ability to generate high-
quality driving videos based on layout conditions provided
by the Carla simulator [1], which include 3D bounding box
projections, lane line projections, and scene description text
prompts. The use of Carla-generated layouts addresses a
critical limitation in real-world driving video datasets: the
lack of diversity in scene types, especially for rare but criti-
cal events like lane cutting and sudden braking. By leverag-
ing Carla’s highly configurable simulation environment, we
can create synthetic layouts that represent complex and di-
verse driving scenarios, such as multi-vehicle intersections,
narrow streets, or sudden obstacles, which are difficult to
capture in real-world data.

In Fig.5 in main text, we showcase our model’s ability
to generate rare videos corresponding to these layouts. The
generated videos highlight InstaDrive’s capacity to faith-
fully adhere to the control signals while producing realistic
outputs. Moreover, by effectively handling corner cases,
our approach bridges the gap in scene diversity, making it
a valuable tool for training and validating driving models
under challenging scenarios. The results demonstrate that
InstaDrive can not only replicate realistic conditions but
also adapt seamlessly to a wide range of complex layouts
generated by Carla, further enhancing its applicability in
autonomous driving research.

3.4. Diversity with Varying Noise
InstaDrive demonstrates the ability to generate diverse
driving videos from identical control conditions with vary-
ing noise inputs, as illustrated in Fig. 2. By introducing
stochastic noise while maintaining consistent control sig-
nals—such as 3D bounding box coordinates, lane line pro-
jections, and instance flow—our model produces a variety

of plausible video outputs that adhere to the defined con-
straints.

3.5. Results on our private dataset
In addition to public datasets, we trained on a 200 hour pri-
vate dataset. The results, as shown in the Fig. 3, demon-
strate that we achieved similar generation quality and con-
trol performance as on nuScenes, highlighting the general-
ization capability of our method.

4. Limitations
Our work establishes a robust, physically informed frame-
work for generating high-quality, multi-view driving
videos, achieving state-of-the-art performance in both video
generation quality and downstream perception task valida-
tion. However, certain limitations remain, mainly due to
time and resource constraints.

Currently, our model’s design has not been exhaustively
optimized, leaving room for improvement in the quality of
the generated videos. For example, the training process is
conducted at a relatively low spatial resolution of 256×448,
which constrains visual fidelity. Scaling to higher reso-
lutions would require fine-tuning the position embeddings
to ensure compatibility, an aspect not yet addressed in this
work.

Future research could explore the integration of more ad-
vanced generative models, such as SD-XL [3], and develop
more efficient methods to produce high-fidelity videos at
larger spatial resolutions. Additionally, the computational
cost of inference for InstaDrive is relatively high, which
presents another avenue for improvement. Enhancing the
efficiency of InstaDrive will be a key focus in future devel-
opments to make the model more practical for real-world
applications.

5. Backbone
Spatial-Temporal DiT (ST-DiT). We use Spatial-Temporal
DiT (ST-DiT) [2] as our backbone, which introduces a novel
architecture that merges the strengths of diffusion models
with transformer architectures [5]. This integration aims to
address the limitations of traditional U-Net-based latent dif-
fusion models (LDMs), improving their performance, ver-
satility, and scalability. While keeping the overall frame-
work consistent with existing LDMs, the key shift lies in re-
placing the U-Net with a transformer architecture for learn-
ing the denoising function ϵθ(·), thereby marking a pivotal
advance in the realm of generative modelling.

The ST-DiT architecture incorporates two distinct block
types: the Spatial DiT Block (S-DiT-B) and the Temporal
DiT Block (T-DiT-B), arranged in an alternating sequence.
The S-DiT-B comprises two attention layers, each perform-
ing Spatial Self-Attention (SSA) and Cross-Attention se-
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Figure 3. Results on private dataset.

quentially, succeeded by a point-wise feed-forward layer
that serves to connect adjacent T-DiT-B block. Notably, the
T-DiT-B modifies this schema solely by substituting SSA
with Temporal Self-Attention (TSA), preserving architec-
tural coherence. Within each block, the input, upon un-
dergoing normalization, is concatenated back to the block’s
output via skip-connections. Leveraging the ability to pro-
cess variable-length sequences, the denoising ST-DiT can
handle videos of variable durations.

During processing, a video autoencoder [6] is first em-
ployed to diminish both spatial and temporal dimensions
of videos. To elaborate, it encodes the input video X ∈
RT×H×W×3 into video latent z0 ∈ Rt×h×w×4, where L
denotes the video length and t = T, h = H/8, w = W/8.
z0 is next “patchified”, resulting in a sequence of input to-
kens I ∈ Rt×s×d. Here, s = hw/p2 and p denote the patch
size. I is then forwarded to the ST-DiT, which models these
compressed representations. In both SSA and TSA, stan-

dard Attention is performed using Query (Q), Key (K), and
Value (V) matrices:

Q = WQ · Inorm;K = WK · Inorm;V = WV · Inorm,

Inorm is the normalized I , WQ,WK ,WV are learnable
matrices. The textual prompt is embedded with a T5 en-
coder and integrated using a cross-attention mechanism.
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