
Long-term Traffic Simulation with
Interleaved Autoregressive Motion and Scenario Generation

Supplementary Material

Our supplementary contains following contents:

(A) Demo Video. We provide more illustrative videos to
demonstrate the motivation and demos in Sec. A.

(B) Model Details. In addition to the key components
introduced, we describe other modules of InfGen in
Sec. B.

(C) Token Details. We have a comprehensive demonstra-
tion of tokens design in InfGen in Sec. C.

(D) Training Details. We explain how we train the inter-
leaved autoregressive model, InfGen, in Sec. D.

(E) Additional Results. We have more experiments of
long-term simulations and ablations in Sec. E.

(F) Limitations and Future Direction. We analyze the
failure cases in InfGen. And further discuss the limi-
tations and the potential improvements in Sec F.

(G) License. We list licenses of all assets used in InfGen.

A. Demo Video

We provide additional videos for better demonstration of
InfGen. In this video, we showcase the existing problem
of current baselines, as introduced in Sec. 1, and the com-
parison between baselines and our method. Then we have
more qualitative examples. Please refer to our project page
for details.

B. Model Details

In this section, we provide more details of InfGen model.
We give an overview of the main hyperparameters of the
model architecture, and explain the setup of agent embed-
ding and query which are directly operated by transformer
decoder. Then we describe more about how to decode vari-
ous outputs.

Hyperparameters. We extend the base model from
SMART-7M [31] to train out InfGen model. We also have
the detailed descriptions about the transformer decoders in
Sec. 4.2, and we list all the main hyperparameters of the
model architecture and our implementations in Table. 4.

Note that we also inherit the road network from [31]
(See Sec.3.3 of their paper) in our NTP pre-training pro-
cess (where the Map-Map Attention Layers are incorpo-
rated). Since we adopt the map tokenizer and transform
maps into discrete tokens, this network will help the model
to understand the topological connectivity and continuity
of unordered map tokens. Finally, the total model size of
InfGen is around 11M.

Table 4. Main hyperparameters of InfGen model.

Hyperparameter Value

Transformer Decoder
attention head dimension 16
number of attention heads 8
number of motion transformer blocks 6
number of scene transformer blocks 3
number of map transformer blocks 3
D, feature dimension of token embedding 128
number of frequency bands 64
tw, Agent temporal Attention radius 12
ra↔a, Agent-Agent Attention radius 60
rm↔a, Map-Agent Attention radius 30
rm↔m, Map-Map Attention radius 10
rq←a, Query-Agent Attention radius 10
rq←m, Query-Map Attention radius 75,10

Tokenizer
R, radius of position grids 75
∆g, grid interval of Vpos 3
∆θ, angle interval of Vhead 3
|Vmotion|, vocabulary size of motion tokens 2048
|Vmap|, vocabulary size of map tokens 1024
|Vpos|, vocabulary size of position tokens 1849
|Vhead|, vocabulary size of heading tokens 120
|Vcontrol|, vocabulary size of control tokens 4

B.1. Agent Feature Learning

Agent Embedding. In our stacked attention layers, we di-
rectly operate on different tokens according to each specific
task. For practical purposes, we construct a comprehen-
sive aggregated agent embedding Fagent ∈ RT×D (where T
denotes the rollout horizon) to process them uniformly as
token sequences in the transformer layers, as mentioned in
Sec. 4.3. Specifically, we obtain the km, vm in Eq. 3, 4, 5
from tokens of different modalities through direct fusion,
as Eq. 9. We first concatenate all the features on channel
dimension and then produce the agent embedding through
1-layer MLP which is directly operated by transformer lay-
ers:

MLP(Concat(Fmotion, Fposition, Fvalidity, Fattribute)), (9)

where validity denotes if the agent at current timestep is vis-
ible by the environment, which is labeled in real log data.
And Fattribute aggregates the shape and type values of each
agent. Notably, validity ∈ RT×1 here reflects not only

https://orangesodahub.github.io/InfGen/

the state of agent but also implicitly embeds the control to-
kens. To get all these features from their low-dimension
values, we use MLP Layers for those in continuous space
(e.g., agent shapes) and learnable embeddings for those in
discrete space. Finally, we have the dynamic agent matrix
tensor FA′ ∈ RA×T×D (as the matrix in Fig. 3) which is
continuously updated during the rollout in an interleaved
autoregressive manner.

Agent Query. As we explained in Sec. 4.2, we start from
an agent query a0 to autoregressively insert the agents in
spatial scene generation. Ideally, we consider that the spa-
tiotemporal features of the agent query are fully aligned
with the ego agent, i.e., it follows the ego agent’s position
and motion. Since we are primarily concerned with the en-
vironment around the ego agent in this task, and the position
tokens Vpos are also centered at the ego agent. To build this
query, we take exactly the same approach as Eq. 9. For its
motion token, we directly use another new special token in-
stead of any existing token from Vmotion. For its position
token, we fix it as the centroid of the Vpos. For its validity,
we set it as invalid. And we use new special agent type and
shape values as its inherent attributes.

B.2. Modeling Layer

Position-aware Attention. We explicitly model the rela-
tive spatial-temporal positions between input tokens in at-
tention calculation (as in Eq. 3, 4, 5). For each query-
context token pair (e.g., agent-agent or agent-map), we add
the relative positional encoding from context token Fc to
query token Fq (Fc, Fq ∈ RD are from FA′).

Specifically, we incorporate 3 types of descriptors: rel-
ative distance ∆p, the relative direction ∆d, the relative
heading ∆θ, where p ∈ R2 and θ ∈ (−π, π) denotes the
positions and headings of input tokens. For temporal at-
tention module (Eq. 3), we add additional time span ∆t to
formulate 4D descriptors:

∆pcq = ||pc − pq||2, ∆θcq = θc − θq, ∆tcq = tc − tq,

∆dcq = atan2(pc,y − pq,y, pc,x − pq,x)− θq,
(10)

which are formulated to rij ∈ RD, the relative positional
encodings of tokens Fi,Fj and then added to keys, values in
geometric attention layers (Eq.3,4,5):

rij = PE([∆pij ,∆dij ,∆θij ,∆tij]), (11)

F l
A′ = Attn(ϕq(F

l−1
A′), ϕk(F

l−1
A′), ϕv(F

l−1
A′), r, I). (12)

In Equation 11, PE is the Fourier embedding layers. In
Equation 12, (i, j) ∈ I and I ∈ NK×2 indicates the directed
or symmetric index set of total involved K context-query to-
ken pairs which are determined through distance thresholds
rq←c (visible range centered on query token specified in Ta-
ble 4) with the upper limitation of number of total context

tokens Nc. While r ∈ RK×D denotes the stacked positional
encodings of total K pairs. And ϕ represents the projection
function to query, key and value, l reflects the index of at-
tention layer.

Decoding Pose Token. As described in Sec. 4.2 and
Fig. 3, we sample new pose token from the categorical dis-
tributions from the updated query feature fa0

at each autore-
gressive step, simultaneously with the control token. We
detail the decoding process of the pose tokens:

we formulate the pose head as the sequentially connected
position head and heading head, in this case we decode pose
token through two separate steps. Given an agent query a0,
we attach it to the ego agent to attend to environments with
position-awareness, and produce the scene generation fea-
ture q′a0

. We then first input it to position head to get the dis-
tribution over the position tokens Vpos, from which we get
the position token of the new agent candidate through top-K
sampling. Secondly, we get the updated agent query a′0 by
locating it at the accurate position which is translated from
the position token, with its heading same as the one of the
ego agent. And again let a′0 to attend to its environment and
output refined feature q′a′

0
, then send it to the heading head

to get another probability distribution over the heading to-
kens Vhead. The headings of the new agents are determined
by sample the token with the highest probability. In step of
decoding headings of new agents, only Agent-Agent Atten-
tion and Map-Agent Attention will be employed, since we
consider the headings are highly related to the surrounding
agents and maps, but not the occupancy grids.

Note that, in Map-Agent Attention Layers, we use differ-
ent visible range when decoding position tokens and head-
ing tokens. For position tokens, we use an r = 75m while
for heading tokens, r = 10m (also specified in Table 4).
We autoregressively repeat such position-heading decoding
step which is controlled by control tokens.

Decoding Attributes. As mentioned in Eq. 8, for those
newly-inserted agents, we also calculate the losses of their
shapes and types, since these attributes also have inher-
ent relationship with their initial pose. We directly predict
the continuous shapes value (l, h, w) through 3-layer MLP
head. To get the types, we predict the categorical distribu-
tions over 3 defined types in WOMD (vehicle, cyclist and
pedestrian) and take top-1 sampling.

C. Token Details

In this section, we have more details regarding the design of
our tokenization mechanisms, especially the control tokens,
and the formulations of GT tokens used for training.

Temporal Tokenization. Regarding the tokens associ-
ated with temporal transitions, e.g., motion tokens, con-
trol tokens, we first tokenize the time axis at time span of

δ = 5 step (0.5 s at 10FPS), as Eq. 13. Accordingly, a real
log from WOMD [14] (n = 91 steps for 9.1 s) results in
N = ⌊n/δ⌋ = 18 discrete tokens.

Tokenize({x0,x1, · · · ,xn−1}) = {x̂0, x̂1, · · · , x̂N−1},
(13)

where x denotes features with temporal transitions, e.g.,
motions xm, validities xv. Importantly, the value of each
x̂ is defined based on different rules. For motions, each
x̂m
k is aggregated motions vector xm

δk : δ(k+1) over the k-th
time segment, as mentioned in Sec. 4.1. Furthermore, re-
garding the validity of agents, we consider both the starting
and ending steps within its time segment: x̂v

k is considered
True if and only if both xv

δk and xv
δ(k+1) are True, i.e.,

x̂v
k = xv

δk ∧ xv
δ(k+1), as a motion token is meaningful only

when x̂ is valid.

Control Tokens. We aim to explain how to derive the
control tokens from real logs. Starting from the token-wise
validity sequences (Eq. 13), we define the <ADD AGENT> to-
ken as:

x̂c
k1

when x̂v
k1

= True and ∀ 0 ≤ i < k1, x̂
v
i = False,

(14)
and the <REMOVE AGENT> token x̂c

k2
is symmetrically de-

fined as the last valid token such that all subsequent ones
are invalid, i.e., ∀ k2 < i ≤ N −1, x̂v

i = False. Thus, we
set all tokens between <ADD AGENT> and <REMOVE AGENT>,
x̂c
k (k1 < k < k2), as the <KEEP AGENT> token.

Notably, for two special cases: 1) we force the x̂c
k1

with
k1 = 0 of Eq. 14 to be <ADD AGENT>; 2) for any <REMOVE

AGENT> token x̂c
k2

with k2 = N−1, we force it to be instead
<KEEP AGENT>.

As we explained in Sec. 4.2, the tokens <ADD AGENT>

and <BEGIN MOTION> only present when we examine the
dynamic agent matrix column-wise. Therefore, when we
organize the tokens sequence according to the spatial lay-
out (as opposed to Eq. 13), <BEGIN MOTION> is defined as
the next token after all the <ADD AGENT> tokens:

x̂c
l when ∀ i < l, x̂c

i is <ADD AGENT>. (15)

Moreover, for these <ADD AGENT> tokens of the GT spatial
sequence, they are ordered according to the distances from
the ego agent, as explained in Sec. 4.4.

Empty Token. Since we incorporate the invalid steps/a-
gents, e.g., those with x̂v = False, into InfGen model,
we also involve the empty tokens shown in Figure 3, as part
of dynamic agent matrix tensor FA′ ∈ RA×T×D. To build
these invalid agent embeddings, we follow the similar meth-
ods of the agent query, but set their positions and headings
to zeros.

Introducing these invalid values can bring unexpected
noise within the modeling layers (in Sec. 4.2), specifically,

interactions between tokens from different timesteps or dif-
ferent agents when any side of them has x̂v = False,
which arise from two sources: 1) the construction of dy-
namic agent matrix tensor FA′ (Eq. 9); 2) position-aware
attention layers (Eq. 10, 11). We address them through ap-
plying the rules:

x̂invalid − x̂invalid ← −zinvalid, (16a)
x̂valid − x̂invalid ← ztrans, (16b)
x̂invalid − x̂valid ← −ztrans, (16c)

where x̂ denotes tokens of various features, e.g., motion to-
kens x̂m, heading tokens x̂h, and x̂invalid, x̂valid reflect their
corresponding x̂v are False,True, respectively. We force
these values to be our predefined constant values z to elim-
inate such noises due to the non-constant x̂valid. Since the
model actually only needs the qualitative characteristic of
the transition between invalid and valid states, rather than
the specific quantitative values. In our experiments, we set
ztrans = 1 and zinvalid = −2. Without Equation 16, InfGen
will suffer from the disruptive noises, preventing effective
modeling of the control sequence.

D. Training Details
As we summarized in Sec. 4.4, we efficiently end-to-end
train InfGen model on multimodal token sequences. Ba-
sically, we parallelly train temporal motion simulation and
spatial scene generation as standard NTP task of each indi-
vidual token modality, and perform interleaved autoregres-
sion in inference stage. We break down the details of the
each aspect for training process in this section.

D.1. Temporal Simulation

Temporal Motions Training. We train on temporal mo-
tion tokens similar to prior works [31], and additionally
deal with the transition of before and after an agent is in-
serted or removed. Given the temporal discrete tokens
of one agent in Eq. 13, we have their GT motion tokens
{x̂m

k }
N−1
k=0 ⊆ Vmotion, validities {x̂v

k}
N−1
k=0 ⊆ {0, 1} (0 =

False, 1 = True), and, furthermore, the control tokens.
From the view of the temporal axis, <ADD AGENT> denotes
the start of the sequence (BOS) while <REMOVE AGENT> de-
notes the end of the sequence (EOS). Therefore, we refer to
the states of the agent as its validities combined with BOS
and EOS.

To supervise the motion tokens tensor Y m ∈ RN

predicted by motion head, we derive the motion mask
Mm ∈ BN from the states3 (Note that masks M are tem-
porally aligned with prediction sequences, not groud-truth
sequences). Assuming the step of the BOS and EOS are
sBOS, sEOS, then we have:

3We omit the superscript of M in this section when possible for sim-
plicity.

1) MsBOS = 1: the step of BOS;
2) MsBOS+1 = xv

sBOS+2 (with xv
sBOS

= xv
sBOS+1 = 1): the

next step after BOS;
3) Ms = xv

s−1 · xv
s · xv

s+1, ∀s, sBOS + 1 < s < sEOS: the
steps between the step after BOS and EOS (not included)
only when the corresponding GT motions are valid.

Otherwise, the steps not satisfy the conditions above have
Ms = 0, including the EOS. Let Xm := {x̂m

k }
N−1
k=0 , then the

total loss for N motion tokens is:

Lm
1:N =

1

|I|
∑
k∈I

CE
(
Y m
k , Xm

k

)
, I = {k |Mm

k = 1},

(17)
where CE is the CrossEntropy loss, as also described in
Eq. 7.

Temporal Controls Training. In the part of temporal
simulation, we train on temporal control tokens {x̂c

k}
N−1
k=0 ⊆

{<NULL>, <KEEP AGENT>, <REMOVE AGENT>} similar to mo-
tion ones. We have described how to derive the control
tokens <KEEP AGENT> and <REMOVE AGENT> from the validi-
ties in Sec. C. And we have <NULL> as the placeholder to-
ken to indicate those steps without any control operations,
which allows Xct to fully represent the entire GT temporal
token sequence.

To supervise the control tokens tensor Y ct ∈ RN pre-
dicted by control head, we derive the temporal control mask
M ct ∈ BN from the states. Here we have:
1) Ms<sBOS = 0: the steps before BOS (not included);
2) MsBOS = 1: the step of BOS;
3) MsBOS+1 = xv

sBOS+2 (with xv
sBOS

= xv
sBOS+1 = 1): the

next step after BOS;
4) Ms≥sEOS = 0: the steps after EOS (included);
5) Ms = xv

s−1 · xv
s · xv

s+1, ∀s, sBOS + 1 < s < sEOS: the
steps between the step after BOS and EOS (not included)
only when the corresponding GT motions are valid.

Then the total loss Lct
1:N for the entire temporal control to-

ken sequence is calculated similar to Equation 17 which
takes Y ct,Xct,M ct as inputs. Note that the steps with Ms =
1(sBOS < s < sEOS − 1) correspond to the <KEEP AGENT>

tokens, while those with Ms = 1(s = sEOS−1) correspond
to the <REMOVE AGENT> tokens. To alleviate the imbal-
ance of these two control tokens, we set the label weights:
w(<KEEP AGENT>) = 0.1 and w(<REMOVE AGENT>) = 0.9
when calculating the CrossEntropy Loss.

D.2. Spatial Generation

Spatial Controls Training. For the spatial scene gen-
eration, we train on the control sequence {x̂cs

k }Lk=0 ⊆
{<NULL>, <ADD AGENT>, <BEGIN MOTION>}. And L denotes
the total number of agents (including those existing and to
be added) in a real log and we force L = 32 in training pro-
cess for saving memory. We also use <NULL> as the place-
holder for those agents without controls (e.g., existing and

not to be added ones), allowing Xcs to fully represent the
entire GT spatial token sequence.

To formulate the spatial token sequence Xcs, we reor-
ganize the all L agents along the spatial axis, as explained
in Sec. C, the first sequence (BOS) when scene generation
begins, while <BEGIN MOTION> denotes sequence (EOS).
Hence, the tokens between BOS and EOS (not included)
are all <ADD AGENT> tokens, and <NULL> only present after
EOS which corresponds to those agents currently in motion
simulation.

As a considerable number of the trailing tokens in Xct

are <NULL> that cannot be trained, we further truncate the
trailing part of Xct—only consider the first L′ = 10 tokens
in training for more efficiency. And the size of Xcs in infer-
ence is scalable since we train in an autoregressive way.

To supervise the control tokens tensor Y cs ∈ RL′
pre-

dicted by control head, we also have the mask M ct ∈ BL′

following:
1) MsBOS = 1: the step of BOS;
2) Ms≥sEOS = 0: the steps after EOS (included);
3) Ms = 1, ∀s, sBOS < s < sEOS: the steps between BOS

and EOS (not included).
Then the total lossLcs

1:M ′ for the spatial control tokens is ob-
tained similar to Equation 17. We also have label weights:
w(<ADD AGENT>) = 0.1 and w(<BEGIN MOTION>) = 0.9 to
deal with the class imbalance.

Spatial Hybrid Attention. To model such spatial se-
quence Xct in an autoregressive manner, we adapt the
causal attention mechanism (in Agent-Agent Attention lay-
ers) similar to the Temporal Attention layers.

Specifically, when predicting token x̂t (e.g., motion to-
ken x̂m

t , control token x̂c
t) in temporal simulation, it will

only involve the history tokens {x̂t−τ}tw
τ=1 within the time

window as the context (as Eq. 3). Therefore, given the spa-
tial token sequence Xcs ∈ RL′

and there exist A′ agents
already in motion simulations, we construct a hybrid mask
M ct

hybrid ∈ BL′×(A′+L′) which consists of two parts:
1) For those A′ agents that already exist, they will not be

masked out: M ct
hybrid[1 :L

′, 1:A] = 0L′×A.
2) For those L′ agents to be predicted (may not all corre-

spond to <ADD AGENT>), we have M ct
hybrid[1 : L

′, A+1 :
A+L′] to be a standard causal mask to exclude the fu-
tures in attention layers.

We can wite it as:

M cs
hybrid[i, j] =

{
0, if j ≤ i or j < A′

−∞, otherwise
, (18)

where i ∈ [1, L′], j ∈ [1, A′ + L′]. Note that the ulti-
mate context which query features attend to is determined
by jointly applying M cs

hybrid and other possible masks (e.g.,
from the visible range).

Table 5. Ablation study of InfGen on long-term traffic simulation (↑). ✓ indicates remaining unchanged as in Table. 2.

Cont. token Pos. token Head. token Composite Kinematic Interactive Map-based Placement-based

✓ ✓ 0.6328 0.5493 0.7043 0.7961 0.4513*

✓ ✓ 0.6564 0.5580 0.7768 0.8077 0.4378
✓ ✓ 0.6509 0.5866 0.7276 0.8107 0.4445

✓ 0.6297 0.5422 0.6962 0.7939 0.4499
✓ ✓ ✓ 0.6674 0.5921 0.7688 0.8003 0.4503

* We take the heuristic approach to remove the agents.

In this way, we train on spatial token sequence with
smaller context length L′ = 10 while extend it to a scal-
able number (> 10) with an upper limit of 128.

E. Additional Results

E.1. Long-term Traffic Simulation

More Qualitative Results. We show more qualitative
comparison results of InfGen and the baselines [24,32] in
Fig. 9, 10,and 11. In these scenario, we again demonstrate
the strengths of our approach. As the ego agent travels for
away from the initial locations, new agents appear in our ex-
amples while maintaining a great realism, seamlessly con-
tinuing the interaction process. This indicates that InfGen
can effectively one of the major challenges of long-term
traffic simulation task.

Metrics Curves. We further investigate how simulation
realism evolves over the duration of long-term rollouts by
plotting metric scores for each sliding window index in Fig-
ure 6. Specifically, we show the evolution of three WOSAC
metric components (Composite, Kinematic, and Placement-
based) for both our method and SMART [24].

As expected, we observe a gradual decrease in real-
ism scores across all methods, reflecting the increasing
difficulty of maintaining realism over extended simulation
periods. However, our method consistently outperforms
SMART by exhibiting a notably slower decline in all met-
rics, particularly in the placement-based component. This
significant improvement highlights the effectiveness of our
proposed interleaved scene generation and motion simula-
tion approach, enabling sustained realism by dynamically
handling agent insertions and removals. These quantita-
tive results strongly align with our qualitative observations,
further emphasizing the importance of explicitly modeling
agent placement and removal to achieve realistic long-term
traffic simulations.

E.2. Ablation Study

We conduct various ablation studies to validate our meth-
ods. We ablate the impact of designed control tokens, posi-
tion tokens and heading tokens on our task. Due to the high

Figure 6. Metrics (adapted WOSAC) curve of InfGen against
SMART [31] over the 30s long-term simulation rollouts.

cost of local evaluation, following [41], we use 5% (2204
out of ∼44K scenarios) of the validation split in this part.

Effect of Control Token. As discussed in Sec.4.1, we
introduce the control tokens to determine the spatial scene
generation sequence. The baselines, to some extent, can be
regarded as versions without the <ADD AGENT> token, and
naturally, the <REMOVE AGENT> token is also absent. To fully
validate the control tokens, we additionally conduct long-
term rollout tests while retaining the <ADD AGENT> token but
removing the <REMOVE AGENT> token.

Note that we use the heuristic approach to remove agents
with distances exceed the R, for two reasons: 1) Adding
agents without removing any results in an unrealistic sce-
nario that would not naturally exist; and 2) to ensure a
fairer comparison. As shown in Table 5, removing <REMOVE

AGENT> token in long-term rollout severely degrades the
kinematic and interactive metrics. Unsurprisingly, as the
continuously increasing number of agents over time signifi-
cantly impacts bother their motion states and internal inter-
actions.

Effect of Position Token. We take position tokens to ef-
ficiently capture the environment information of local re-
gions, which are ultimately aggregated into the agent query
in spatial scene generation. We have an ablation experiment
by completely removing the position tokens along with its
token embedding, and we instead directly predict the (x, y)
locations of agents. The results reveal that the position to-
kens help the model better address the placement-related

issues, as grids simplify the search space. Additionally,
through position tokens embedding, the agent query can
more efficiently perceive the spatial distribution of the en-
vironment.

Effect of Heading Token. The initialization of newly-
entered agents’ poses, is essential to the their subsequent
motions and further the interactions with others. Similarly,
we validate replacing the head token prediction with the di-
rect prediction of continuous angle values. The results at ta-
ble. 5 also reflects that heading tokens can slightly improve
the interactive and placement-based performance.

F. Limitations and Future Direction
Although InfGen has achieved promising results on long-
term traffic simulation, our method is limited in some as-
pects, as briefly described in Sec. 6. In this section, we have
detailed discussions on these terms.

Failure Cases. We have some failure cases existed:
(1) Unreasonable inserted agents. In some examples,

our method may have unreasonable newly entered agents
in traffic scenario. As shown in Fig. 7, at t = 6 s and
t = 12 s, the agents highlighted by red boxes occupy the
road boundaries, which is unrealistic in real-world scenar-
ios. It indicates that our method lacks sufficient control at
such a fine-grained level. Notably, we did not impose any
explicit constraints on this kind of cases, such as regulariza-
tion losses.

(2) Incorrect initial motion inferring. During the spatial
sequence prediction, InfGen first observes overall traffic
scenario before placing new agents in potential locations.
When these agents are located in a complex road situation,
they may fail to accurately infer their initial velocity (or mo-
tion) for the subsequent rollout. For example, as shown in
Fig. 8, some new agents incorrectly remain stationary on
the driving lanes, which also impacts the motions of other
agents, ultimately reducing the realism.

(3) Agents flickering modeling. According to our obser-
vations, the phenomenon of agents “flickering” is prevalent
in real-world data, particularly in regions farther from the
ego agent. And it arises due to the instability of the ego
agent’s remote perception. In our work, we handle these
flickering agents in two ways: first, we discard agents with a
presence duration shorter than 0.5 s; second, we change the
flickering frequency, which can be attributed to the resolu-
tion of discretization on time axis (as introduced in Sec. C).
Specifically, the minimum temporal granularity that each
token can represent is 0.5s. As a result, InfGen inherently
struggles to generate highly realistic agents exhibiting flick-
ering behavior.

A potential solution is to introduce another format of to-
kens Vvalidity which reflects the frame-wise validity within
even one 0.5 s token, and make InfGen learn it in temporal

t = 1s t = 6s t = 12s

Figure 7. Failure case #1: newly-entered agents appear unreason-
ably on the boundary of the road.

t = 1s t = 6s t = 12s

Figure 8. Failure case #2: In the region with complex map struc-
ture (highlighted by red box), newly-entered agents fail to cor-
rectly infer their initial velocity (or motion) and remain stationary,
which is unrealistic.

simulation. Given that each 0.5 s segment contains 5 valid
timesteps, with each step has 2 possible states (invalid, and
valid), we can derive the vocabulary size: 25 = 32. But
the task becomes more complex under such conditions. We
leave this as a future direction.

Future Directions. In addition to addressing the limita-
tions discussed, some other potential interesting improve-
ments may be as below:

(1) Long context understanding and learning. While
InfGen effectively addresses the challenge faced by Long-
term Sim Agent—modeling the insertion and deletion of
agents interleaved with their motions in continuously evolv-
ing traffic scenarios to maintain high realism over extended
rollout durations—we believe that another critical bottle-
neck for even longer horizons is the accumulation of errors
over the rollout process. In our work, we adhere to a uni-
fied next-token prediction paradigm for end-to-end training,
with reference to a historical information constrained by the
temporal length. Some hard cases in a long-long-term roll-
out may fail: in a busy intersection where the lateral traffic
passes, followed by the longitudinal traffic while other dif-
ferent lanes remain open, the execution intervals of differ-
ent actions can be significantly long, and the rules can be
greatly complex. Some works [25, 41] utilize closed-loop
training or finetuning for improvements, which also cannot
be a solution. Thus, it remains an other challenge.

(2) Driving Map Generation. The duration of long-term
rollout controlled by InfGen is significantly constrained
by the size of the map region—-without this limitation, it
would be possible to extend the rollout even further. There-
fore, integrating the map generation would be a substan-

tial improvement, enabling longer and more flexible simu-
lations. Some concurrent works, such as GPD-1 [34], have
some progress in this point, making it a promising direction
for near future.

G. License
The Waymo Open Motion Dataset (WOMD) [14] we used
in our work is licensed under Waymo Dataset License
Agreement for Non-Commercial Use4.

The implementations of official WOSAC metrics5 based
on which we develop our extended metrics are licensed un-
der the Apache License, Version 2.0.

4https://waymo.com/open/terms/
5https://github.com/waymo-research/waymo-open-dataset/

https://waymo.com/open/terms/
https://github.com/waymo-research/waymo-open-dataset/

O
ur

s
SM

A
R

T
O

ur
s

SM
A

R
T

O
ur

s
SM

A
R

T

t = 1s t = 6s t = 12s t = 18s t = 24s t = 30s

O
ur

s
SM

A
R

T

Figure 9. More qualitative comparison results #1.

O
ur

s
SM

A
R

T
O

ur
s

SM
A

R
T

O
ur

s
SM

A
R

T

t = 1s t = 6s t = 12s t = 18s t = 24s t = 30s

O
ur

s
SM

A
R

T

Figure 10. More qualitative comparison results #2.

O
ur

s
SM

A
R

T
O

ur
s

SM
A

R
T

O
ur

s
SM

A
R

T

t = 1s t = 6s t = 12s t = 18s t = 24s t = 30s

O
ur

s
SM

A
R

T

Figure 11. More qualitative comparison results #3.

	Demo Video
	Model Details
	Agent Feature Learning
	Modeling Layer

	Token Details
	Training Details
	Temporal Simulation
	Spatial Generation

	Additional Results
	Long-term Traffic Simulation
	Ablation Study

	Limitations and Future Direction
	License

