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A. Implementation Details
In this section, we provide detailed explanation for Figure 2,

implementation details for the transformation Ftext(·) and

the human-object region mask attention (HOR mask), as

mentioned in Section 3.1.2 and Section 4.3, respectively.

A.1. Detailed Explanation for Figure 2
“Sibling” Identification

We define ”siblings” at two distinct levels:

• Input-Level Siblings: Within a single image, two

HOI triplets (human, verb, object) are consid-

ered siblings if they share the same object or the same

verb (interaction) category.

• Output-Level Siblings: Two distinct HOI categories are

considered siblings if the cosine similarity between their

respective classification head weights in the model is

high. This similarity serves as a proxy for semantic or

feature-space closeness.

Sub-figure Analysis
• Figure 2(a) & (b): These plots show the training mAP

curves for representative sibling HOI pairs. The red lines

highlight instances where the learning progress of one

category appears to suppress the progress of its sibling,

illustrating a competitive effect at both the input (a) and

output (b) levels.

• Figure 2(c): This bar chart presents the average error

rate, computed across all categories, under two condi-

tions. It compares performance on ground-truth instances

that have input-level siblings in the same image (red bar)

against those that do not (yellow bar). A category’s error

rate is defined as the proportion of its samples that yield

an mAP of 0 during evaluation.

• Figure 2(d): This scatter plot visualizes the relationship

between a category’s final performance and its inherent

output-level similarity, focusing on “non-head classes”.

Crucially, the output-level similarity for a category (x-

axis) is determined before training by calculating the av-

erage cosine similarity of its initial classification head

weights to those of all other categories. This initial simi-

larity is then plotted against the category’s final mAP after

training (y-axis).

A.2. Label Prompt in Details
In this subsection, we provide additional details about the

transformation Ftext(·). As mentioned in Section 3.1.2, for

different inputs, we formalize them into distinct text de-

scriptions, which are then fed into the CLIP [9] text en-

coder to obtain the corresponding text features. As shown in

Table A1, we introduce the process of generating different

text descriptions corresponding to different inputs following

GEN-VLKT [6].

Input Text Description

object (Object) A photo of a/an [Object].
interaction (Verb) A photo of a person [Verb] something.

HOI triplet A photo of a person [Verb-ing] a/an [Object].

Table A1. Text descriptions corresponding to different inputs fol-

lowing GEN-VLKT [6].

A.3. Human-Object Region Mask Attention
In this subsection, we provide additional details about the

human-object mask attention (HOR mask), as mentioned in

Section 4.3. To guide interaction queries to focus on the cor-

rect human-object interaction regions within the image and

avoid interference from similar sibling HOIs, we employ

an attention mask for the union of each human-object pair.

Specifically, for the standard mask attention [2] weights in

the cross-attention of Decoderaction:

A = softmax (M+W ) ,

Mi(x, y) =

{
0 if (x, y) ∈ region(bhi , b

o
i )

−∞ otherwise
,

where A represents the final attention weights, W denotes

the initial attention weights computed by Qa and Vi, and

Mi(x, y) is the mask applied to the attention weight of the



i-th interaction query at location (x, y) in the image fea-

tures. Here, region is the bounding box that encapsulates

both of the given bounding boxes bhi , b
o
i .

The attention mask effectively filters out most input level

“Toxic Siblings” distractions, enhancing the recognition of

HOI triplets. However, it cannot entirely eliminate inter-

ference caused by adjacent “Toxic Siblings” biases. For

example, as illustrated in Fig 1 (a), a person standing be-

hind a bench and another sitting on the same bench share an

overlapping bounding box. To further mitigate input level

“Toxic Siblings” bias, we propose the “contrastive-then-

calibration” (C2C) debiasing objective. The effectiveness

and necessity of the C2C debiasing objective are validated

in Table 2.

B. More Experimental Results

In this section, we provide additional experimental results,

including the performance gains of our method over the

baseline on categories affected by class imbalance bias and

the model’s performance without the HOR mask module.

Following LOGICHOI [5], we conducted further ablation

experiments on V-COCO [3] to analyze the effects of loss

weights and hyperparameters.

B.1. Evaluation Metrics
We use mean Average Precision (mAP) as the primary eval-

uation metric. A detection is considered a true positive (TP)

if (1) the intersection over union (IoU) between the pre-

dicted human and object bounding boxes exceeds 0.5, and

(2) the predicted action/interaction category is correct. For

HICO-DET, mAP is computed in two settings: (i) the de-

fault setting, using all test images, and (ii) the Known Ob-

ject setting, where average precision (AP) is computed for

each object on a subset of images containing specific ob-

jects. For V-COCO, we use two evaluation settings: Sce-

nario 1, where the detector must report an empty box when

the interaction excludes an object, and Scenario 2, where

object box detection can be ignored.

B.2. Performance on bias Categories
In Fig A1, we present a comparison of Average Precision

(AP) for several HOI categories affected by “Toxic Sib-

lings” bias. Due to this bias, the baseline model strug-

gles to recognize certain HOI categories, such as “waving

a bus” and “exiting a train” (see the line in Fig A1). The

merge learning objective partially addresses this by lever-

aging shared features among similar HOI categories, en-

abling the recognition of some challenging categories, such

as “waving a bus” (AP +55.4%). However, “Toxic Sib-

lings” bias arises not only from long-tail issues but is often

exacerbated by shared interactions or objects across cate-

gories, making it even more challenging to address. While

Figure A1. Experimental results of our method compared to the

baseline on categories affected by class imbalance bias.

the merge learning objective facilitates the learning of gen-

eralized features, it is insufficient for resolving ambigu-

ities among overly similar categories, such as “exiting a

train”, and may even intensify confusion between certain

categories, such as “operating a toaster”. To overcome this

limitation, we introduce the split learning objective, which

enables the model to more effectively distinguish between

these closely related categories (see the line in Fig A1).

Overall, our combined “merge-then-split” learning ob-

jective effectively mitigates “Toxic Siblings” bias, resulting

in a significant mAP improvement of +18.93% for HOI cat-

egories affected by class imbalance bias.

B.3. Experimental Result On Zero-shot

Method Type Unseen Seen Full

GEN-VLKT UV 20.96 30.23 28.74

UniHOI UV 26.05 36.78 34.68

Ours UV 30.47 41.96 38.05

GEN-VLKT UO 10.51 28.92 25.63

UniHOI UO 19.72 34.76 31.56

Ours UO 31.01 41.59 37.23

GEN-VLKT NF 25.05 23.38 23.71

UniHOI NF 28.45 32.63 31.79

SICHOI NF 34.52 36.06 35.75

Ours NF 36.12 37.58 37.01

GEN-VLKT RF 21.36 32.91 30.56

UniHOI RF 28.68 33.16 32.27

SICHOI RF 34.24 41.58 40.11

Ours RF 35.48 42.91 40.96

Table A2. Zero-Shot Results On HICO-DET



Table A2 serves as an extension of Table 2, illustrating the

zero-shot performance in greater detail.

B.4. Applying C2C/M2S to HOICLIP

Method
HICO-DET (Default)

Full Rare Non-Rare

HOICLIP 34.54 30.71 35.70

HOICLIP (with C2C and M2S) 43.11 42.69 43.58
+8.42 +11.57 +7.84

Table A3. Experimental results with applying C2C and M2S to

HOICLIP on HICO-DET[1] under the default setting.

We integrate our C2C and M2S learning objectives into

HOICLIP [7], as shown in Table A3. This increases

HOICLIP’s HICO-DET mAP to 43.11% (Full), 42.69%

(Rare) and 43.58% (Non-Rare), achieving substantial gains

of +8. 42% (Full), +11.57% (Rare) and +7.84% (Non-

Rare), respectively.

B.5. Experimental Result without HOR Mask

Method
HICO-DET (Default)

Full Rare Non-Rare

Baseline (GEN-VLKT-s) 33.75 29.25 35.10

ViPLO [8] 34.95 33.83 35.28

ADA-CM [4] 38.40 37.52 38.66

BCOM [10] 39.34 39.90 39.17

Ours (w/o HOR mask) 42.01 41.55 42.21

+2.67 +1.65 +3.04

Ours (with HOR mask) 42.93 42.41 43.11
+3.59 +2.51 +3.94

Table A4. Experimental results with and without HOR mask on

HICO-DET[1] under the default setting.

Table A4 presents the performance of our method with-

out the HOR mask module, using ResNet-50 (R50) as

the backbone and CLIP as the VLM. Notably, the pro-

posed Contrastive-then-Calibration (C2C) and Merge-then-

Split (M2S) learning objectives independently mitigate both

types of bias, achieving an 8.26% improvement over the

baseline and a performance of 42.01% (+2.67% compared

to the state-of-the-art BCOM) on the HICO-Det dataset.

B.6. Ablation Studies on Hyper-Parameters
Ablation on loss weights. To evaluate the effectiveness of

the proposed learning objectives, we conducted ablation ex-

periments by varying their respective weights, as summa-

rized in Table A5. Specifically, λ1 denotes the weight of

the original detection loss, while λ2, λ3, λ4, and λ5 repre-

sent the weights of the contrastive loss Lcon, calibration loss

Lcal, merge loss Lmerge, and split loss Lsplit, respectively.

Ablation on V-COCO
loss weights APS1

role APS2
role

λ2 = 1, λ3 = 0.5, λ4 = 1, λ5 = 0.5, while λ1 =

0.1 69.3 71.8

1 69.8 72.1
10 69.5 72.0

λ1 = 1, λ3 = 0.5, λ4 = 1, λ5 = 0.5, while λ2 =

0.1 69.1 71.4

1 69.8 72.1
10 69.2 71.6

λ1 = 1, λ2 = 1, λ4 = 1, λ5 = 0.5, while λ3 =

0.05 69.5 71.7

0.5 69.8 72.1
5 69.4 71.8

λ1 = 1, λ2 = 1, λ3 = 0.5, λ5 = 0.5, while λ4 =

0.1 69.2 71.3

1 69.8 72.1
10 69.4 71.6

λ1 = 1, λ2 = 1, λ3 = 0.5, λ4 = 1, while λ5 =

0.05 69.6 71.8

0.5 69.8 72.1
5 69.4 71.7

Table A5. Ablation study on loss weights.

Ablation on V-COCO
# of k1 and k2 APS1

role APS2
role

k1 = 1, k2 = 10 69.0 71.2

k1 = 2, k2 = 10 69.8 72.1
k1 = 3, k2 = 10 69.5 71.9

k1 = 5, k2 = 10 69.3 71.6

Table A6. Ablation study on k1.

Ablation on k1. As a supplement to Table 3 in the main

text, we conduct further ablation experiments on the hyper-

parameter k1 mentioned in Section 3.3.2. The correspond-

ing results are shown in Table A6.

C. Qualitative Results
C.1. Qualitative Comparisons with the Baseline
Qualitative Comparisons of input level Bias. Fig A2 and

A3 present qualitative comparison results between the base-

line [6] and our model under the influence of input level

“Toxic Siblings” bias on HICO-DET [1]. From left to right,

the images depict the negative triplet causing bias, the pre-

dictions of the baseline, our predictions, and the ground

truth.



Fig A2 illustrates the first type of input level “Toxic Sib-

lings” bias: interaction actions are misclassified due to the

influence of nearby, similar negative triplets (see column

1), leading to incorrect predictions (see column 2). For in-

stance, in the first row, the ground truth (see column 4) is

“a person riding a train”. However, due to the presence

of a similar negative HOI “a person driving a train” (see

column 1), which shares the same object “train” with the

ground truth, the baseline misclassifies the interaction as

“driving”, even though the human and object are correctly

predicted (see column 2). By identifying negative triplets

in the surrounding context and differentiating them through

the proposed C2C learning objective, our model accurately

predicts the interaction (see column 3).

Fig A3 illustrates the second type of input level “Toxic

Siblings” bias: unrelated and unpaired humans and objects

are mistakenly predicted to have interactions due to the in-

fluence of nearby triplets (see column 1 and 4) that share

the same human or object in the context. For example, in

the first row, the baseline incorrectly matches a black mo-

torcycle with a person wearing a blue vest (see column 2),

influenced by the nearby interactions of “a person riding a

motorcycle”. The proposed C2C learning objective guides

the model’s attention to the correct spatial regions, mitigat-

ing the effects of input level “Toxic Siblings” bias and en-

abling accurate predictions (see column 3).

Qualitative Comparisons of Class Imbalance Bias. The

qualitative results in Fig A4 demonstrate the effectiveness

of our Merge-then-Split (M2S) learning objective in miti-

gating class imbalance bias. From top to bottom, the rows

represent the baseline predictions, our model’s predictions,

and the ground truth. Due to output level “Toxic Siblings”

bias, the baseline tends to misclassify long-tail HOI cate-

gories, such as “eating an orange” or “zipping a suitcase”

into semantically similar sibling head classes, like “eating

a cake” or “and a suitcase” (see rows 1 and 4). In contrast,

our debiased model successfully predicts the correct long-

tail HOI categories (see rows 2 and 5). This improvement is

attributed to the M2S learning objective, which effectively

reduces misclassifications for long-tail classes.

C.2. Qualitative Examples for Super Interaction-
Object Categories

Tables A7 and A8 present selected category clusters ob-

tained through the merge process. The clusters in Table A7

primarily encompass actions involving the manipulation of

everyday objects using hands or mouth, while those in Ta-

ble A8 focus on interactions that reflect the diverse forms

of emotional contact, interaction, and specific actions be-

tween humans and animals or other individuals. Table A9

illustrates the multimodal interaction behaviors between hu-

mans and food objects through actions such as eating, in-

specting, and smelling.

HOI categories in Super Category 1

holding a bowl, stirring a bowl
washing a bowl, licking a bowl
cutting a cake, holding a cake

drinking with a cup, holding a cup
pouring a cup, sipping a cup

washing a cup, holding a pizza
holding a remote, cutting a sandwich

Table A7. Super-category of manipulating everyday objects using

hands or mouth.

HOI categories in Super Category 2

holding a cow, hugging a cow
kissing a cow, holding a dog
hosing a dog, hugging a dog
kissing a dog, washing a dog

holding a horse, hugging a horse
kissing a horse, washing a horse

holding a person, hugging a person
kissing a person, stabbing a person

Table A8. Super-category of interactions between humans and an-

imals.

HOI categories in Super Category 3

eating an apple, inspecting an apple
smelling an apple, and an apple

eating a banana, inspecting a banana
smelling a banana, and a banana

eating a broccoli, smelling a broccoli
and a broccoli, eating a carrot
smelling a carrot, and a carrot

eating a donut, smelling a donut
and a donut, eating a hot dog

and a hot dog, eating an orange
inspecting an orange, and an orange

Table A9. Super-category of interaction between humans and food

objects.



a person
driving a train

Baseline

a person
carrying a 
surfboard

a person
signing a 

baseball bat

a person riding  
a train

a person
carrying a 
umbrella

a person
driving a train

Negative Triplet

a person
carrying a 
surfboard

a person
signing a 

baseball bat

a person riding  
a train

a person
carrying a 
umbrella

a person riding 
a train

Ground Truth

a person
washing a 
surfboard

a person
holding a 

baseball bat

a person
boarding a 

train

a person
standing under 
a umbrella

a person riding 
a train

Ours

a person
washing a 
surfboard

a person
holding a 

baseball bat

a person
boarding a 

train

a person
standing under 
a umbrella

Figure A2. Qualitative comparisons of the first type of input level “Toxic Siblings” bias between our method and the baseline.
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Figure A3. Qualitative comparisons of the second type of input level “Toxic Siblings” bias between our method and the baseline.
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Figure A4. Qualitative comparisons of output level “Toxic Siblings” bias between our method and the baseline.
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