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1. The Principle of Dynamic Saliency
Our use of feature norm as a saliency indicator is motivated
by the observation that regions with larger semantic mag-
nitudes across time tend to exhibit higher semantic consis-
tency, while dynamic regions often yield smaller projection
values due to variations in object pose and position. This
principle aligns with prior studies [6, 9, 17], where feature
norms are used to estimate attention, objectness, or seman-
tic relevance. Accordingly, in Eq.(1) in main article, we
adopt the feature norm to approximate each region’s se-
mantic response strength, assuming that consistently high
responses indicate static or salient areas.

2. Training Objectives
In this section, we present more details on training objec-
tives. Please note that each loss in our loss function has
a clear derivation from previous works. The theoretical
derivation can be found in corresponding previous works,
e.g., [13, 19, 21] etc. Hence, we will not provide a detailed
derivation process in our article.

Score distillation sampling loss. Following [19], we
employ multi-view score distillation sampling (SDS) loss
using rendered images under camera poses of pseudo multi-
view images and input video.In detail, there are rendered
multi-view images I = {I(i,1), . . . , I(i,j)} under 6 camera
poses, where i denotes the timestamps and j denotes the
number of views. Formally, SDS loss can be defined as:

LSDS = α1Lpseudo
SDS + α2Lreal

SDS

= α1LSDS(ϕ, I
(i,j)) + α2LSDS(ϕ, I

i
real)

(1)

where α1 and α2 are hyperparameters, Iireal is the ren-
dered image under camera pose of input video at time i.

Photometric loss. Following [13, 19], we compute
the reconstruction loss Lrec between rendered images
and pseudo multi-view images, and the foreground mask
Lmask.

LPIPS loss. We introduce the LPIPS loss Llpips [21] to
compute the feature similarity between pseudo multi-view
images and corresponding rendered images. We leverage
VGG [12] as backbone to extract image features.
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Figure 1. Example on low-quality images generated by Image-
Dream and high-quality images generated by Zero123++, both us-
ing the same input video.

Overall loss. Based on above loss functions, we obtain
the final overall loss L:

L = λ1LSDS + λ2Lrec + λ3Lmask + λ4Llpips (2)

where λ1, λ2, λ3, λ4 are hyperparameters, we set λ1 =
λ2 = λ3 = λ4 = 1.0.

3. Training Details of DS4D-GA and DS4D-DA

We train our two models DS4D-GA (using GA in TSSF)
and DS4D-DA (using DA in TSSF) under the same train-
ing setting. During the initial 1,000 iterations, we train our
models except TSSF and deformation MLP. Subsequently,
the models with TSSF and deformation MLP are optimized
over 6,000 additional iterations. For the deformation MLP,
we employ each MLP with 64 hidden layers and 32 hidden
features. The learning rate of TSSF and deformation MLP
is set to 1.6× 10−4 and is decayed to 1.6× 10−6. Follow-
ing [19], the top 2.5% of points are densified with the most
accumulated gradient. The overall training process costs
approximately 3 hours on a V100 GPU.
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Methods High-quality Input Images Low-quality Input Images
CLIP ↑ LPIPS ↓ FVD ↓ FID-VID ↓ CLIP ↑ LPIPS ↓ FVD ↓ FID-VID ↓

STAG4D [19] 0.9078 0.1354 986.8271 26.3705 0.9026 0.1437 1311.8770 40.8664
DS4D-GA (Ours) 0.9206 0.1311 799.9367 26.1794 0.9195 0.1380 849.8154 25.8726
DS4D-DA (Ours) 0.9225 0.1309 784.0235 24.0492 0.9221 0.1339 805.4721 24.0623

Table 1. Evaluation and comparison of the performance when facing low-quality input images and high-quality input images. The best
score is highlighted in bold.

4. Training Details on Discussion

In this section, we present the training details of experi-
ments about Discussion (Section 5) in our manuscript. For a
fair comparison, the training settings are the same as 4D-GS
[15].

Network Architecture. We add our proposed DSFD
in 4D-GS. Meanwhile, we directly replace the spatial-
temporal structure encoder and multi-head Gaussian defor-
mation decoder of 4D-GS with our TSSF. Since the multi-
view sequences from Neu3D’s dataset are authentic, we use
TSSF-GA instead of TSSF-DA. Additionally, the hyperpa-
rameter settings of HexPlane are the same as 4D-GS. In de-
tail, the basic resolution of HexPlane is 64, and is unsam-
pled by 2 and 4.

Training Settings. We use the same dense point cloud
generated by SFM as 4D-GS. Then we also downsample
point clouds lower than 100k. The learning rate of TSSF
and deformation MLP are set to 1.6×10−3 which decreases
to 1.6 × 10−5. The batch size is 1. Following 4D-GS, we
do not use opacity reset operation. The overall training iter-
ations spend 14000 for each scene.

Note that: a) Our DS4D includes point initialization
(init.) via LRM. However, in Neu3D’s data, common point
cloud init. (e.g., 4D-GS) uses colmap rather than LRM.
Thus, it is unfair to compare DS4D and 4D-GS due to the
different init.. b) DSFD and TSSF are core contributions,
thus inserting them into 4D-GS can directly demonstrate the
effectiveness of our contributions in real-world scenes.

5. More details on Datasets

In this section, we present more details on four datasets.
Consistent4D Dataset. Following [19], we use seven

30-frame video in front view as input video, and their
ground-truth with four novel views (azimuth angles of
−75◦, 15◦, 105◦, and 195◦, respectively) as evaluation.

Objaverse Dataset. We random sample seven dynamic
objects from [2, 8]. The 24-frame ground truth under 360◦

cameras (the range of azimuth angles is [0◦, 360◦]) ren-
dered from each object is used as evaluation. Meanwhile,
we use seven 24-frame videos in front view as input video.
Compared to Consistent4D Dataset, the object in Objaverse
Dataset has more complex motion, e.g., suddenly waving at
some time.

Neu3D’s Dataset. We use three real-world scenarios
from Neu3D’s dataset [7]. Each scene has 300 frames with
20 cameras, a total of 6000 high-quality images. Follow-
ing [15], we use 300 frames under the front camera pose as
evaluation, others are used as training videos.

Data from Online Sources. Following [19], we intro-
duce some challenging videos from online sources for qual-
itative evaluation. Moreover, we also generate input videos
by Stable Video Diffusion [1]. Each input video has 14 or
30 frames.

6. Experiments
In this section, we conduct more experiments to evaluate
our method.

6.1. Robustness of Our Methods
In this section, we explore whether the quality of input im-
ages has a huge influence on the generation results of our
methods.

Specifically, we construct a dataset with low-quality in-
put multi-view images. Using the same input video as Tab.1
of the main manuscript, we leverage ImageDream [14] to
produce a series of multi-view sequences. Then, we select
multi-view images with inconsistency or shape deforma-
tion from the generation multi-view sequences. These low-
quality multi-view images are grouped as the low-quality
input images. The example data of low-quality inputs can
be seen in Fig. 1. The low-quality inputs has serious incon-
sistency between different timestamps and has color fading
and texture blurry compared with the high-quality inputs we
used in Tab.1 of the main manuscript (e.g., the shape and
color of the suit).

Based on the low-quality inputs, we compare our meth-
ods with STAG4D. The quantitative and qualitative results
are shown in Tab. 1 and Fig. 2. Our methods when us-
ing low-quality inputs maintain a similar performance com-
pared to our results when using high-quality inputs. How-
ever, in image metrics (LPIPS) and video metrics (FID and
FID-VID), STAG4D when using low-quality inputs has a
significantly worse performance compared to STAG4D us-
ing high-quality inputs. Furthermore, in Fig. 2, STAG4D
generates the blurry textures in the back view. The reason
is that back’s texture details are blurry in the low-quality in-
put at some timestamps (e.g., at t1 of v3). In contrast, our
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Figure 2. Qualitative comparison on 4D generation results with low-quality inputs. For each method, we render results under two novel
views at three timestamps.
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Figure 3. Comparison regarding whether using point clouds gen-
erated by a large reconstruction model as initialization. A: The
model without point initialization. B: The model with point ini-
tialization.

methods can generate results with clear textures. This in-
dicates that our methods can handle the low-quality inputs
better than STAG4D. Since our methods decouple dynamic-
static information at the feature-level. Even though input
low-quality data, thanks to the robustness feature extraction
ability of DINOv2, we can still leverage the inherent dif-
ferences between features to decouple. The differences in-
clude the change of motion, shape and textures between the
corresponding two frames.

In summary, the above experiments demonstrate that the
quality of input images has few influence on the genera-
tion results of our methods and verify the robustness of our
methods when input low-quality data.

6.2. Analysis on Different Point Initializations
We evaluate the effect of our method using LRM
(OpenLRM) [3, 4] as point clouds initialization on Tab. 2.
The results verify that our method using LRM achieves
comparable performance.

6.3. Analysis on Frame choosing

We evaluate the effect of choosing first/last/middle frame
for initialization and reference on Tab. 3. The results verify
that our method exhibits comparable performance regard-
less of first/last/middle (CLIP variance ≈ 1.4×10−7). Be-
cause in our method: Deformation MLP uses fused Gaus-
sian features (FGS) to predict deformation of Gaussian
properties between current frame and initialization frame,
where FGS includes dynamic features. The initialization
frames are the same as one of the reference frames, which
ensures the dynamic features indicate the motion trend of
current frame relative to reference frames.

6.4. More Analysis on Ablation Experiments

The effect on points initialization. To validate the effect
of point initialization, we add the point initialization to the
baseline model, which is labeled as B (as shown in Ta-
ble.2 of the manuscript). After performing point initializa-
tion, the performance of B model has improved on all met-
rics. Additionally, we visualize the Gaussian points from
baseline model (labeled as A, as shown in Table.2 of the
manuscript) and B in Fig.3. Obviously, the Gaussian points
of B are relatively uniform and denser in distribution than
those of A, which ensures the stability of optimization and
fidelity of the motion and shape fully learned by the model.

The effect on LPIPS Loss. To validate the effect of
LPIPS Loss, we add the LPIPS Loss based on model B,
labeled as C (as shown in Table.2 of the manuscript). The
performance of C model has improved on all metrics. It
indicates the effectiveness of LPIPS loss.



Methods Point Initialization Consistent4D dataset Objaverse dataset
CLIP ↑ LPIPS ↓ FVD ↓ FID-VID ↓ CLIP ↑ LPIPS ↓ FVD ↓ FID-VID ↓

DS4D-GA InstantMesh 0.9206 0.1311 799.9367 26.1794 0.8868 0.1761 890.2646 26.6717
DS4D-DA InstantMesh 0.9225 0.1309 784.0235 24.0492 0.8881 0.1759 870.9489 25.3836
DS4D-GA LRM 0.9200 0.1319 804.4437 26.1927 0.8862 0.1768 897.2301 26.7553
DS4D-DA LRM 0.9220 0.1312 793.0164 24.1553 0.8875 0.1764 874.9876 25.4868

Table 2. Evaluation and comparison of the performance on Consistent4D dataset and Objaverse dataset when using different point initial-
izations.

Methods Consistent4D dataset Objaverse datase
CLIP ↑ LPIPS ↓ FVD ↓ FID-VID ↓ CLIP ↑ LPIPS ↓ FVD ↓ FID-VID ↓

First Frame 0.9219 0.1306 788.8806 24.0211 0.8885 0.1759 871.0908 25.3978
Last Frame 0.9216 0.1307 785.1663 24.0728 0.8882 0.1760 873.8067 25.3407

Middle Frame 0.9225 0.1309 784.0235 24.0492 0.9221 0.1339 805.4721 24.0623

Table 3. Evaluation and comparison of the performance when choosing first/last/middle frame for initialization and reference.
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Figure 4. Visualization on the heatmap of dynamic features in
DSFD. The red region highlights the primary zone of interest in
dynamic features.
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Figure 5. Visualization on the score map of point features in TSSF-
GA and TSSF-DA. The red area indicates model’s high attention
on dynamic information in point features of a specific view.

6.5. More Visualization

In this section, we provide more visualizations of features
in DSFD and TSSF, respectively.

DSFD. In Fig.4, we supplement more heatmaps of dy-
namic features obtained by DSFD decoupling features from
the current and reference frame features. The red area in-
dicates the primary region of interest in the features. The
dog’s head movements indicate the main motion trends be-
tween the reference frame and the current frame. No matter
what kind of novel views, dynamic features decoupled by
our DSFD can accurately represent the dynamic zones. It
once again demonstrates our method can acquire accurate
dynamic features using DSFD.

TSSF. In Fig.5, we supplement more score maps of se-
lecting similarity dynamic information from point features
of different views by TSSF-GA and TSSF-DA. Moreover,
Fig.6 shows the corresponding generation results at the cur-
rent timestamp, including the same example as Figure.8 (b)
in the manuscript and the same example in Fig.5.

Specifically, the head movements of the person indicate
the primary trend in motion between the middle and cur-
rent time. The red area indicates the model’s high attention
on dynamic information in point features of a specific view.
According to score maps based on different views, two ap-
proaches can capture a certain degree of similar dynamic
information from different viewpoints. TSSF-GA is inter-
ested in both body and head in v1, but TSSF-DA pays more
concentration to the head. This is because TSSF-DA re-
duces the impact of novel views, resulting in TSSF-DA fo-
cusing more on capturing regions with a motion trend that is
more similar to the front frame in other novel views. Thus,
compared to TSSF-GA, TSSF-DA can produce results with
clear details in the corresponding regions. For example, the
hair texture of person at the top of Fig.6, and the leg texture
of triceratops at the down of Fig.6. It once again indicates
TSSF-DA can alleviate issues caused by novel views.
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Figure 6. Qualitative comparison between model using TSSF-GA
and model using TSSF-DA at current timestamp. Their corre-
sponding visualization on the score map of point features is as
shown in Fig.5 and Figure.8 (b) in our manuscript.

Direct Decoupling Our Decoupling Approach
118.326 (ms) 8.241 (ms)

Table 4. Comparison of running time with different decoupling
approaches. All approaches are tested on a NVIDIA 3090 GPU.

6.6. More Qualitative Comparisons

We supplement more qualitative comparisons in Fig.8. We
compare our methods DS4D-GA and DS4D-DA with other
SOTA methods, including Consistent4D [5], Dreamgaus-
sian4D [10], STAG4D [19], SC4D [16], 4Diffusion [20],
and L4GM [11]. All the experiments of the methods are
carried out using the code from their official GitHub repos-
itory.

6.7. More Examples on 4D Content Generation

We supplement more 4D content generation examples pro-
duced by DS4D-GA and DS4D-DA in Fig.7.

6.8. More Examples on Real-World Scenario

We supplement more real-world 4D scene generation ex-
amples using our method and baseline 4D-GS [18] in Fig.9.
The experiments of 4D-GS are carried out using the code
from their official GitHub repository.

6.9. Time Consuming on Decoupling

As mentioned in our manuscript, direct decoupling always
costs considerable computation time. To intuitively eval-
uate the time-consuming advantage of our decoupling ap-
proach compared to direct decoupling, we provide the run-
ning time of each approach on decoupling dynamic-static
features from a frame features with a 30-frame video, as
shown in Tab.4. Undoubtedly, our decoupling approach is
about 14 times faster than direct decoupling.

7. Limitations
Limited to the resolution of input video, it is challenge for
our method to produce high-resolution 4D contents , e.g.,
over 2K resolution.
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Figure 7. More Results for 4D Generation using DS4D-GA and DS4D-DA.
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Figure 8. Qualitative comparison on video-to-4D generation. For each method, we render results under two novel views at two timestamps.
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Figure 9. Visualization of real-world 4D scene generation compared with 4D-GS.
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