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1. Details and Discussion

1.1. Implementation Details
All experiments were conducted using PyTorch 2.1.1 on a
NVIDIA GeForce RTX 3090 GPU. We adopted Stable Dif-
fusion v2 [6] as the base model, retaining default hyper-
parameter configurations. For both Pseudo-Person Image
Generation and Garment-Infused Image Inpainting, we em-
ployed the standard DDIM sampler for deterministic infer-
ence with 50 time steps. For Spetral Pose Injection, we set
the standard deviation τ of the Gaussian mask to 0.1.

During the garment morphing stage, we implemented
distinct region segmentation strategies for different garment
categories: 1) Upper garments underwent five-region pro-
cessing (left and right upper arms, left and right lower arms,
and torso regions); 2) Lower garments were similarly de-
coupled into five regions (left and right upper legs, left and
right lower legs, and hip-above regions); 3) Dresses were
segmented into upper and lower garment sections for sepa-
rate processing. The agnostic and clothing masks are pro-
vided by the dataset. In practical applications, SAM [3] can
be used to obtain the mask corresponding to the user input
image.

1.2. Text Prompts Acquisition
Here, we describe the process of acquiring text prompts
and examine their impact. Specifically, we convert images
into text using the CLIP Interrogator [5], where the gen-
erated descriptions consist of a core caption and auxiliary
modifier terms. The core caption directly describes the im-
age content, while the auxiliary terms are selected based
on cosine similarity between garment features and text em-
beddings from four predefined datasets: artists, mediums,
movements, and flavors.

To verify the importance of text prompts in virtual try-on
tasks, we conducted a controlled analysis using a generic
prompt (“a person wearing an upper garment”). As shown
in Fig. 1, more detailed text prompts lead to try-on results
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Figure 1. Influence of different text prompts.

Method FIDu↓ FIDp↓ SSIMp↑ LPIPSp↓

OmniVTON 9.621 7.758 0.832 0.145
w/o semantic parsing 13.705 11.930 0.817 0.170

w/o Ic-path attention modulation 9.808 7.939 0.831 0.149

w/o high-frequency noise 15.817 14.558 0.836 0.182
w/o SPI + w/ average noise 12.402 10.650 0.849 0.151
w/o SPI + w/ ControlNet 10.873 9.016 0.818 0.168

Table 1. More ablation studies of different components.

with enhanced identity consistency, highlighting the crucial
role of precise textual descriptions in controlling the quality
of generation.

1.3. Additional Ablation Analysis
To demonstrate the rationale behind our component design,
we conducted additional ablation experiments. First, for
SGM, the role of semantic parsing is to perform pixel-
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Figure 2. Qualitative results of additional ablation analysis.

level segmentation on skeleton-divided semantic regions,
enabling multi-part decoupling. As shown in the upper part
of Fig. 2, relying solely on bounding box-based segmenta-
tions, without semantic parsing, for localized transforma-
tions leads to erroneous morphing and part overlap, signifi-
cantly degrading the quality of the try-on results. The quan-
titative comparison of the “w/o semantic parsing” setting
in Tab. 1 strongly reinforces the necessity of this compo-
nent. Secondly, the “w/o Ic-path attention modulation” set-
ting involves replacing the attention modulation in Eq. (8)
of the main paper with the original self-attention mecha-
nism, resulting in noticeable degradation across all evalu-
ation metrics, thus validating the effectiveness of bidirec-
tional semantic context interaction.

For SPI, the lower part of Tab. 1 and Fig. 2 present
both quantitative and qualitative results for different vari-
ants. The “w/o high-frequency noise” variant retains only
the low-frequency components of inversion noise, yet the
absence of high-frequency noise leads to overly smoothed
results. The “w/o SPI + w/ average noise” variant averages
random noise and inversion noise as the initial noise. Com-
pared with the “w/o high-frequency noise” variant, the in-
troduction of random noise significantly improves percep-
tual quality. However, due to the lack of frequency-domain
decoupling, this variant enhances performance in paired set-
tings but fails to suppress source garment texture interfer-
ence from inversion noise in unpaired settings, causing per-
formance degradation. Furthermore, comparative experi-

τ FIDu↓ FIDp↓ SSIMp↑ LPIPSp↓

0.01 9.941 8.185 0.823 0.160
0.05 9.620 8.033 0.829 0.153
0.1 9.621 7.758 0.832 0.145
0.3 10.056 8.150 0.842 0.140
0.5 11.330 9.422 0.852 0.138

Table 2. Sensitivity analysis of cutoff frequency τ on VITON-HD.

ments with ControlNet [7]-based skeleton-conditioned in-
jection demonstrate that OmniVTON effectively overcomes
the inherent bias of diffusion models in handling multi-
ple conditions by decoupling garment and pose constraints,
leading to improved try-on results.

In Tab. 2, we provide additional analysis on the sensitiv-
ity of the cutoff frequency τ . When τ is too small, it sup-
presses low-frequency pose information, limiting SSIM. As
τ increases, metrics generally improve; however, if τ be-
comes too large, it preserves excessive high-frequency de-
tails, which harms realism and worsens FID. Setting τ =
0.1 balances pose consistency and visual fidelity.

1.4. Inference Cost
As shown in the upper part of Tab. 3, we compare the infer-
ence costs of OmniVTON with three state-of-the-art meth-
ods. The results show that OmniVTON achieves the lowest
memory consumption, outperforms Cross-Image in infer-
ence speed, and performs comparably to TIGIC and IDM-
VTON, all while maintaining optimal performance. The
lower part of the table further presents a module-wise break-
down of inference times. Notably, under the Non-Shop-
to-X setting, removing the pseudo-person generation step
leads to a sharp reduction in the runtime of the SGM mod-
ule, from 6.61s to just 0.14s, thereby reducing the overall
inference time to 9.82 seconds and further highlighting Om-
niVTON’s strong potential for real-world deployment.

1.5. User Study
We validate the effectiveness of our method through a rigor-
ously designed user study, establishing a systematic evalu-
ation framework across three benchmark datasets: VITON-
HD [1], DressCode [4], and StreetTryOn [2]. The exper-
iment involved 100 volunteers, each participating in a vi-
sual evaluation questionnaire containing 100 comparative
sample groups. Specifically, the VITON-HD dataset in-
cludes 20 test sample groups, the DressCode dataset covers
40 sample groups across three garment categories (upper,
lower, dresses), and the StreetTryOn benchmark allocates
the remaining 40 sample groups with a scenario-balanced
distribution. Each task in the questionnaire asks, “Which
method generates more realistic and accurate images?” with
randomized option ordering to ensure unbiased results. As
shown in Fig. 3, our method demonstrates significant supe-



Training-free Training

Time / Memory
OmniVTON TIGIC Cross-Image IDM-VTON

16.29s 11,542MB 13.87s 23,578MB 41.49s 15,748MB 11.87s 17,936MB

OmniVTON FIDu↓ SGM Time (s) SPI Time (s) CBS Time (s)

9.621 6.61s 3.60s 6.08s

Table 3. Runtime and memory comparison on VITON-HD.
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Figure 3. User study on the VITON-HD dataset [1], DressCode
dataset [4] and StreetTryOn benchmark [2].

riority across all benchmarks.

1.6. Failure Case Visualizations

We present several failure cases of OmniVTON in Fig. 4.
As discussed in the main paper, our method encounters
challenges in handling high-density crowds and targets with
minimal visible body regions. These limitations primar-
ily stem from OmniVTON’s partial reliance on pre-trained
modules such as OpenPose and TAPPS, whose predictions
can be unreliable under such extreme conditions. Such ob-
servations point to a promising direction for future work
towards more robust and adaptable universal virtual try-on
systems.

2. Additional Visual Results

2.1. Visual Comparisons with SOTAs

Fig. 5 and Fig. 6 present supplementary visual compar-
isons between OmniVTON and baseline methods on the
VITON-HD and DressCode datasets, respectively. While
Fig. 7, Fig. 8, Fig. 9, and Fig. 10 showcase detailed visu-
alized results of different methods across four scenarios in
the StreetTryOn benchmark.
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Figure 4. Failure cases of our method.

2.2. More Try-on Results

As shown in Fig. 11, we further showcase various garment-
model combinations, including virtual try-on results for
lower-body garments and dresses under the Shop-to-Street
scenario. This highlights OmniVTON’s ability to over-
come the technical barriers that previously limited the per-
formance of StreetTryOn in this task.
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Figure 5. Qualitative comparison on the VITON-HD dataset.
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Figure 6. Qualitative comparison on the DressCode dataset.
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Figure 7. Qualitative comparison for Shop-to-Street scenario on the StreetTryOn benchmark.
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Figure 8. Qualitative comparison for Model-to-Model scenario on the StreetTryOn benchmark.
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Figure 9. Qualitative comparison for Model-to-Street scenario on the StreetTryOn benchmark.
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Figure 10. Qualitative comparison for Street-to-Street scenario on the StreetTryOn benchmark.
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Figure 11. More try-on results of OmniVTON across various clothing types and scenarios.
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