APPENDIX

Photolithography Overlay Map Generation with Implicit Knowledge Distillation Diffusion
Transformer

A. Background
A.1. Overlay Misregistration Errors Introduction

Lithography overlay misregistration errors are
quantified using the error vector magnitude (EVM) [1],
assessed after the photoresist coating and exposure
processes to measure the misalignment between the current
and preceding circuit maps, as depicted in Fig. 1. EVM is
defined as the vector difference between the lithography
stacking vector Vj;r , obtained from actual overlay
measurements across all wafers per lot, and the predicted
stacking vector Vp from Al models like GAGAN [1] and
our proposed IKDDIT, illustrated in Fig. 2. The formula for
EVM is given by:

EVM = [ Xz + Y&, M

where X,,, and Y,,.. denote the error components along the
X-axis and Y-axis, respectively, reflecting deviations in the
lithography overlay process. As shown in Fig. 2, these
components are orthogonal projections of the EVM vector,
representing the misalignment between the actual and
predicted lithography stacking vectors Vg and Vp. In this
work, EVM is employed as a metric instead of traditional
pixel-based measures such as PSNR.
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Figure 1: Overlay misregistration errors on wafer map [1].
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A.2. Business Impact

The impact on production capacity caused by overlay
pilot runs can be demonstrated in Fig. 3 [1]. As illustrated
in Fig. 3a, it is essential to split two wafers from a single
lot to conduct an overlay pilot run, enabling the
determination of overlay misregistration errors. These two
wafers undergo rework (removal of photoresist during the
etching process), are returned to the original process step,
and subsequently merged with the parent lot. Finally, the
second production process is performed on the entire batch
of 25 wafers, employing feed-forward error compensation
based on the average overlay measurements of the two
pilot wafers. Reworking each batch significantly impacts
lithography equipment efficiency, resulting in a loss of
scanner productivity.

In Fig. 3b, the APC system can perform feed-forward
error compensation through Al model predictions of the
overlay map. This eliminates the need to split lots for pilot
runs, thus avoiding scanner loss and enhancing
productivity. Lithography is widely recognized as the
bottleneck in semiconductor manufacturing processes.
Therefore, improving the productivity of lithography
equipment directly enhances the overall productivity of the
foundry, leading to substantial revenue increases for
semiconductor enterprise.
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Figure 3. Lithography process flow w/ & w/o pilot run [1].

A.3. Limitations

While IKDDiT is a specialized generative Al model
developed for overlay map generation in the
semiconductor manufacturing industry, its capabilities
extend beyond this intended use, raising potential concerns
about misuse. For instance, IKDDIT can be leveraged to
produce fake overlay maps that may deceive quality
control systems or disrupt manufacturing processes if used
with malicious intent. Recognizing these risks, access to




the model is restricted, and its use is carefully controlled to
prevent exploitation.

Moreover, the underlying architecture of IKDDIiT, with
its advanced generative capabilities, could be adapted to
generate synthetic images or even manipulated visuals,
such as those used in fake news or misleading media. The
power of this technology highlights the need for strict
governance, ethical considerations, and cautious
management. Ensuring that IKDDiT is only used in
legitimate, monitored settings is crucial to prevent
potential societal harm that could arise from its ability to
generate highly realistic yet fabricated content.

B. Implementation Details

B.1. Diffusion Configurations

Unlike the DiT [2], which relies on the ADM framework
introduced by Dhariwal and Nichol [3], we employ the
EDM framework [4] to streamline training and enhance
inference efficiency. In particular, we utilize EDM
preconditioning through a o-dependent skip connection,
which involves carefully calibrated hyperparameters [4].
This approach allows us to bypass ADM's noise covariance
parameterization as implemented in DiT. During inference,
we follow a default time sequence:
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where N= 40, p= 7, tgee = 80, and t,;;, = 0.002.
Additionally, we adopt Heun's method, a numerical
procedure for solving ordinary differential equations
(ODEs) with a given initial value, as the ODEs solver for
sampling, which, according to our preliminary tests,
achieves the same FID as the 200 sampling steps used in
DiT but requires significantly fewer function evaluations
(60 evaluations instead of 200), thus supporting the
findings by [3].

B.2. KIDDIT Architecture

Our IKDDiT model adheres to the standard DiT
architecture, comprising a series of Gated Cross-Attention
DiT blocks. Each block integrates a multi-head cross-
attention module, tanh gating, a multi-head self-attention
module, and a pointwise feedforward layer. The teacher
decoder concludes with layer normalization. Since the
encoder and decoder in IKDDiT have different weights, we
employ a linear projection layer after the decoder to align
them. Additionally, IKDDiT incorporates sine-cosine
positional embeddings [5] for the teacher encoder, student
encoder, and student decoder inputs. Notably, our design
does not use relative position embeddings or layer scaling.

The teacher-student architecture effectively doubles the
parameter count compared to a standard DiT model.
However, during inference, the teacher network is

discarded, meaning there is no additional parameter burden.
Consequently, the learned KiDDiT-XL model has a size of
762 million parameters, which is on par with MaskDiT-XL
[6] (730 million). Although KiDDiT-XL has a slightly
larger model size than SD-DiT-XL [7] (741 million),
however, KiDDiT-XL is not designed to be deployed on
edge devices, so this model size is acceptable.
Additionally, during training, SD-DiT employs an
exponentially moving average (EMA) to update the teacher
encoder without using backpropagation via SGD, resulting
in minimal computational overhead. In contrast, IKiDDiT
trains the teacher encoder's parameters independently,
incurring higher computational costs. Nevertheless, similar
to SD-DiT, IKiDDiT removes the teacher encoder entirely
during inference, thereby avoiding any additional load.

B.3. Compare Model Settings

DiT [2] include variations at both 256 x 256 and 512 x
512 resolutions, with our experiments focusing on the 512
x 512 resolution models for performance comparisons. To
encode input time steps, we employ a 256-dimensional
frequency embedding, followed by a two-layer MLP. This
MLP is designed to match the transformer's hidden layer
size and uses SiLU activations. The AdalLN layer
integrates the time step and class embeddings, applying
SiLU nonlinearity and a linear transformation. For the core
transformer operations, DiT use GELU activations,
approximated with tanh in IKDDiT. Additionally, we
implement classifier-free guidance on selected channels.

MDT. [8] features a architecture comprising 28
transformer layers, each with a hidden dimension of 1152
and 16 attention heads. This design yields a model with
675.8 million parameters and a computational complexity
of 118.69 GFLOPs. Consistent with the established design
principles of MDT, we adopt a smaller patch size of p =2,
a choice demonstrated to enhance synthesis performance
and improve the generation of fine details.

MaskDiT [6] employs an asymmetric encoder-decoder
architecture. The encoder is based on DiT-XL, the largest
model configuration from DiT, using a patch size of 2 for
all input patches. It retains the original DiT architecture but
omits the final linear projection layer and processes only
unmasked patches. Consistent with DiT, the encoder maps
patches through a linear projection, adding standard ViT
frequency-based positional embeddings to all input tokens.
Masked tokens are subsequently removed before
processing the remaining encoder layers.

The decoder follows the architecture of MAE [9] with
modifications: adaptive layer normalization blocks are
added to condition on time and class embeddings. This
adapted decoder, derived from a lightweight MAE design,
features only two DiT blocks and operates on the complete
set of tokens.

SD-DIiT [7] integrates the DiT [2] block as the




fundamental transformer unit within its backbone network,
incorporating adaptive layer normalization to merge
conditional time and class embeddings. Like MaskDiT,
SD-DiT employs an asymmetric encoder-decoder structure
for the generative diffusion process. The student DiT
encoder is configured as DiT-XL with a patch size of 2,
while the compact DiT decoder, comprising 8 DiT blocks,
mirrors the design principles of MAE.

For the discriminative objective, SD-DiT adopts
configurations inspired by iBOT [10] and DINO [11]. The
teacher DiT encoder functions as an exponential moving
average (EMA) of the student encoder, with the
momentum coefficient progressively increasing from
0.996 to 0.999 by the end of training.

B.4. Training Details

VAE Pre-training. The VAE pre-training settings are
summarized in Table 1. We employ the AdamW [12]
optimizer with a base learning rate of 0.0015, combined
with a weight decay of 0.05. The optimizer's momentum
parameters are set to §;=0.9 and [,=0.95. Training is
conducted with a batch size of 4096, using a cosine decay
learning rate schedule [13] and 5 warmup epochs over 50
total training epochs. Data augmentation methods include
Random Resized Crop, Color littering, and Gradient
Clipping.

Image-Text Encoder Pre-training. The pre-training
configuration for the Image-Text Encoder by unified
contrastive learning is also presented in Table 1. We also
use AdamW as the optimizer, this time with a base learning
rate of 0.003 and the same weight decay of 0.05. The
momentum parameters remain [5;=0.9 and ,=0.95, with
a reduced batch size of 1024. The learning rate schedule
again employs cosine decay with 5 warmup epochs over 50
training epochs. No additional augmentation is applied.

IKDDIiT Training. For end-to-end training of the
IKDDiT model, we use the AdamW optimizer with a base
learning rate of 0.003, weight decay of 0.05, and
momentum parameters adjusted to §;=0.9 and ,=0.95.
The batch size is significantly reduced to 64 to
accommodate end-to-end fine-tuning. The learning rate
schedule remains cosine decay with 10 warmup epochs,
extending to 100 training epochs. The only augmentation
used in this phase is random resized cropping.

B.5. Computing Resource Configuration

The comparison of training efficiency for DiT, MDT,
MaskDiT, SD-DiT, and IKDDiT was conducted using
PyTorch version 1.12.0 on a setup comprising 8% NVIDIA
A100 80 GB GPUs. All models were evaluated at the XL
scale to maintain consistency. The experiments utilized a
training batch size of 64, and each model was trained for
578.1k iterations, ensuring a comprehensive and uniform
assessment of performance across different architectures.

Table 1: VAE pre-training setting.

Config Value
Optimizer AdamW
Base Learning Rate 0.0015
Weight Decay 0.05

Optimizer Momentum $1=0.9, §,=0.95
Batch Size 4096

Learning Rate Schedule Cosine Decay

Warmup Epochs 5
Training Epochs 50
RandomResizedCrop
Augmentation Color Jittering
Gradient Clipping

Table 2: Image-Text encoder pre-training setting.

Config Value
Optimizer AdamW
Base Learning Rate 0.003
Weight Decay 0.05
Optimizer Momentum £:=0.9, ,=0.95
Batch Size 1024
Learning Rate Schedule Cosine Decay
Warmup Epochs 5
Training Epochs 50
Augmentation N/A

Table 3: IKDDIT end-to-end training setting.

Config Value
Optimizer AdamW
Base Learning Rate 0.003
Weight Decay 0.05
Optimizer Momentum B:=0.9, $,=0.999
Batch Size 64
Learning Rate Schedule Cosine Decay
Warmup Epochs 10
Training Epochs 100
Augmentation RandomResizedCrop

C. Preliminaries

The primary generative framework of this paper is the
Diffusion Model. We will first introduce the preliminaries
of Diffusion Models, followed by an explanation of Latent
Diffusion Models, which perform the diffusion and
denoising processes in the latent space. Lastly, we will
discuss the concept of classifier-free guidance.

C.1. Diffusion Model

To lay the groundwork for our architectural design, we
begin by summarizing essential concepts relevant to
diffusion probabilistic models (DDPMs) [14]. These




models generate an image by iteratively reversing a gradual
process of introducing noise. The image x,, which follows
a distribution q(x,), is corrupted by the forward process q
through the gradual addition of Gaussian noises over T
steps.

q(xelxe_q) := N(xt; Y, 1—Bexe_q ugtl) 3

where B; determines the variance of noises added at
timestep t. The forward process results in a sequence of
latent variables x;, ..., x that become increasingly noisy.
Eventually, with enough iterations, this sequence reaches a
state where it consists purely of noise, specifically
x7~N(0,I). Importantly, it is possible to marginalize the
intermediate steps and directly derive x; from x,.

q(xel|xp) := N(xt;\/ axo, (1 — &t)l) (4)
where a,:= 1—-p, and @, :=[[ic,a; . @, are
predetermined hyperparameters. Using the
reparameterization trick, we derive samples as:

x:(xg, €) = JUrxy + /1 — @€ (5)

where € is the standard Gaussian noise. The core objective
of diffusion models is to approximate the reverse denoising
process, represented as:

Po (Xe—11x) 1= N (g g (X1, ), Utzl) (6)

where neural networks are leveraged to estimate the
parameters of pg . The reverse model is optimized via a
variational lower bound on the data log-likelihood x,,
formulated as:

L(#) = —log pg(xe—11x¢)
+ Xt Dt (@7 (xe—1|x¢, X0) [|po (xe—11xt)) (7

where excluding an irrelevant constant term for training.
Since q* and pg are Gaussian, the Kullback-Leibler
divergence Dg; can be computed using the means and
covariances. Reparameterizing pg with a noise prediction
model €4, we simplify training to minimize the error
between predicted noise €g(x;) and the €, ground truth
Gaussian noise:

Lsimple = Ex,s,t[llet —€p (xt(xo; E): t)”%] (8)

Nevertheless, the diffusion model also needs optimization
of the reverse process variance Lg, which makes the full
objective Ly; necessary. Adopting the method of Nichol
and Dhariwal [15], we pre-train €4 using Lgimpie and
subsequently train £q with the full objective. The model
inference starts from x,~N (0, ) and generates samples
via x;_~pg (x;_1|x:), utilizing the reparameterization
trick.

C.2. Latent Diffusion Models

Training diffusion models directly in high-resolution
pixel space often results in computational challenges due
to prohibitive costs. Latent Diffusion Models (LDMs) [16]
offer an efficient solution with a two-step process: (1)
using an autoencoder to condense images into a lower-
dimensional latent space with a learned encoder E; (2)
training a diffusion model on these compact latent
representations z = E(x), rather than the full-resolution
image x (where E remains fixed). Images can then be
synthesized by drawing samples z from the diffusion model
and reconstructing them using the decoder x = D(z).

As depicted in Figure 2, LDMs demonstrate strong
performance while utilizing only a fraction of the
computational resources needed by pixel-space diffusion
models like ADM. This efficiency in terms of GFLOPs
makes LDMs an attractive foundation for exploring
architectural advancements. In our work, we adapt
IKDDiT and other masked DiTs for latent space operation,
though they can also be extended to pixel space without
any modifications. This results in a hybrid approach for
image generation, employing both convolutional VAEs
and transformer-based DDPMs.

C.3. Classifier-free Guidance

Conditional diffusion models typically incorporate
additional input information, such as class labels c. Under
these circumstances, the reverse diffusion process is
defined as pg(x;_q|x;, c), where both €5 and Xy are
conditioned on c. In this context, classifier-free guidance
can be employed to direct the sampling procedure in
finding x that maximizes the log-likelihood logp(c|x)
[17]. Using Bayes' Rule, we derive V,logp(c|x)
V, logp(x|c) — V, logp(x). By interpreting the output of
diffusion models as a score function, the sampling process
in DDPMs can be steered to sample x with high p(x|c)
using:

€p(x¢,€) = €(x, @) + w - Vyc logp(c|x) (9)

where w represents the guidance scale, where w =1
denotes standard sampling without any guidance. To train
the model without conditioning, we randomly drop c
during training and replace it with a learned "null"
embedding @. Classifier-free guidance is well-documented
to significantly enhance sample quality compared to
traditional sampling methods [14], and this trend is evident
in our IKDDiT models as well.

MUSE [18] utilizes a dynamic approach by
progressively increasing the guidance scale linearly
throughout the sampling process. This technique enhances
sample diversity in the initial stages while ensuring higher
fidelity as sampling progresses. Building on this concept,
we introduce a power-cosine schedule for adjusting the
guidance scale during sampling:




Wy = W (10)

In this context, t denotes the time step within the sampling
process, t;,q, represents the total number of sampling
steps, w specifies the peak guidance scale, and s adjusts
the rate at which the guidance scale increases. As
illustrated in Fig. 4, the power-cosine schedule maintains a
lower guidance scale in the initial steps, followed by a
rapid escalation as the process advances. A higher s value
slows the increase at the beginning and accelerates it near
the end. This enhanced classifier-free guidance approach,
utilizing the power-cosine schedule, promotes sample
diversity in the early stages while ensuring superior quality
in the later stages. For our experiments, s is set to 4 and w
to 4, optimizing image fidelity in the final steps.
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Figure 4. The power-cosine scaling schedule applied to the

guidance scale in classifier-free guidance for varying values of s.

When s is larger, the increase of w progresses more gradually

during the initial steps and accelerates more rapidly in the later

steps.

D. Attention Mechanisms

This section delves into an in-depth exploration of the
attention mechanisms in other masked DiT, encompassing
the  Multi-Head  Self-Attention and  Adaptive
Normalization Layer Zero Block (adalLN-Zero block)
introduced by DiT, and the Positional-Aware Self-
Attention proposed by MDT.

D.1. Multi-Head Self-Attention

Multi-Head Self-Attention mechanism integrates the
embeddings of t and c into a two-element sequence, kept
distinct from the sequence of image tokens. The
transformer block is adjusted to incorporate an additional
multi-head cross-attention layer after the self-attention
block, drawing inspiration from the original design by

Vaswani et al. [5] and akin to the implementation in LDMs
[16] for class label conditioning. This cross-attention
component significantly increases the computational cost,
contributing approximately a 15% increase in Gflops.

D.2. Adaptive Normalization Layer Zero Block

Peebles and Xie [2] explore replacing standard layer
normalization layers in transformer blocks with adaptive
layer normalization (adaLN). Instead of directly learning
the scale and shift parameters y and § for each dimension,
adaLN computes these parameters by regressing from the
sum of embedding vectors t and c. Building on this, Peebles
and Xie [2] further modify the adaLN DiT block, naming
it the adaLN block, and extend the method to also regress
dimension-specific scaling parameters « . These «
parameters are applied before residual connections in the
DiT block, with the MLP outputting o initialized to
produce a zero vector, ensuring the DiT block functions as
an identity mapping initially.

D.3. Positional-Aware Self-Attention

To enhance positional information in the model, Gao et
al. propose a Positional-Aware Self-Attention mechanism
for both the encoder and decoder, facilitating the learning
of masked latent tokens. This mechanism leverages
positional relationships among all tokens, allowing the
model to predict masked latent tokens using the unmasked
ones effectively. The encoder adds conventional learnable
global position embeddings to the noisy latent input, while
the decoder applies position embeddings differently during
training and inference. During training, a side-interpolator
integrates the global position embeddings, whereas in the
inference phase, the side-interpolator is removed, and the
decoder explicitly incorporates position embeddings to
retain the enriched positional context.

Secondly, each block of the encoder and decoder
incorporates a local relative positional bias for every head
when computing self-attention scores. Specifically,

. (QKT )
Attention(Q,K,V) = softmax + B, 1y

e

where Q, K, V represent the query, key, and value in the
self-attention module, respectively; d; denotes the
dimension of the key, and B, is the relative positional bias.
The relative positional bias B, is determined by the
difference between the i-th position and other positions
and is updated during training. This bias captures local
positional relationships, enhancing the modeling of
masked latent tokens. The relative positional bias B, is
determined by the difference between the i-th position and
other positions and is updated during training. This bias
captures local positional relationships, enhancing the
modeling of masked latent tokens.
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Figure 5: Unified contrastive learning framework in the image-text-label space, seamlessly integrating supervised learning with image-
label data and language-image contrastive learning using image-text data.
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Figure 6: An illustration of covering image-label and image-text data in the image-text-label space.

E. Unified Contrastive Learning

In IKDDIiT, we implement a unified contrastive learning
paradigm [19] designed to train an image-text
discriminative model that seamlessly integrates visual,
textual, and categorical data within a shared embedding
space. This comprehensive approach extends beyond
conventional pairwise contrastive learning by harmonizing
semantic information from various modalities, including
images, text descriptions (equipment logs), and categorical
labels (e.g., equipment, scanner exposure chuck, and
reticle IDs). Such integration allows for more robust cross-
modal representation learning, capturing the complex
relationships inherent in multi-source industrial data.

Figure 5 provides a visual representation of this unified
framework, showcasing how supervised learning on
image-label pairs is combined with language-image

contrastive learning using image-text pairs. This hybrid
learning setup ensures that the model can learn rich and
meaningful embeddings by leveraging both types of data.
Figure 6 elaborates on the intricate organization of image-
label and image-text data within the image-text-label space,
illustrating how these modalities are effectively aligned
through image-text-label triplets. The diagram emphasizes
the distinction between positive and negative pairs, with
positive pairs highlighted using green and blue tiles and
negative pairs left uncolored.

Image-label data pair images with textual concepts
based on annotated labels, shown as green tiles for
semantic alignment. Image-text data are uniquely indexed,
matching only at diagonal entries, marked by blue tiles.
This setup highlights the model's precision in learning
cross-modal relationships, boosting downstream task
performance.
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Figure 7: Training loss curves for all IKDDiT models are presented, capturing the loss progression recorded every 1000 iterations
throughout the training period. We compare the performance across different model sizes: IKDDiT-S, IKDDiT-B, and IKDDiT-LX,
which correspond to small, base, and extra-large configurations, respectively.

model achieves a steeper decline in training loss, resulting
F. Model Scaling on Training Loss in faster convergence and a lower final loss value
compared to smaller models. This trend is consistent with
observations in language modeling, where larger
transformer architectures not only demonstrate improved
loss curves but also deliver superior performance across
various downstream evaluation benchmarks [20]. These
findings highlight the advantages of model scaling in
enhancing learning efficiency and generalization, offering
valuable insights for designing high-performance models
suitable for complex tasks.

Figure 7 illustrates the impact of scaling on training loss,
focusing on how increasing the computational complexity
of the IKDDiIT model influences convergence behavior.
We plot the loss over training for all IKDDiT models (the
sum of the noise prediction mean-squared error and Dy ).
By expanding the transformer architecture, whether
through adding more layers, enlarging hidden state
dimensions, or increasing the number of input tokens, the




G. Additional Experiments

In this section, we conduct additional experiments to
explore the optimal model configurations and parameters,
focusing on classifier-free guidance scores, positional-
aware attention mechanisms, interactions between full and
partially unmasked latent tokens, VAE decoders, and
varying masking ratios. Experiments were performed using
the XL model configuration with default training settings,
employing FID as the primary evaluation metric. To
expedite assessments, we reduced training iterations to
150k.

G.1. Classifier-free Guidance Score

In this study, we implement a power-cosine schedule
[18], which linearly increases the guidance scale
throughout the sampling process, as described in Eq. 10 in
Section C-3. This approach enhances diversity in the initial
sampling stages while gradually ensuring higher fidelity as
sampling progresses. We experimented with five different
guidance scale scores w (3, 3.5, 4, 4.5, and 5) and five
guidance scale rates s (0.1, 1, 2, 3, and 4) to
comprehensively analyze their impact on the model's
performance.

As shown in Table 4, the experiment reveals that the
model achieves its best performance with a guidance scale
w = 4 and a guidance rate s = 4, yielding the lowest FID
score of 24.66. This indicates that a moderate guidance
scale combined with a progressively increasing guidance
rate effectively balances sample diversity and generation
quality, enabling the model to reach optimal performance
during the sampling process.

When the guidance scale w is too small (less than 4), the
model’s output is less influenced by the conditioning input,
resulting in noisier and less accurate samples. On the other
hand, if the guidance scale w is too large (greater than 4),
the generated samples become overly uniform, with
limited diversity. In such cases, the images generated
exhibit very limited variation, stripping the model of the
inherent flexibility expected of a generative model and
potentially producing samples that almost exactly replicate
the training data, thus diminishing the creative aspect of the
generation process. This extreme setting also introduces
the risk of overfitting, where the model becomes overly
tailored to specific conditioning inputs from the training
data, lacking natural random variability and ultimately
impairing the model’s generalization capability.

Therefore, we adopt a guidance scale w =4 and a
guidance rate s =4 as the Classifier-Free Guidance
hyperparameters for IKDDiT’s Diffusion Model, ensuring
a well-balanced and high-quality generative performance.

G.2. Positional-aware Attention

In this section, we evaluate the performance of two
attention mechanisms: the conventional multi-head self-
attention and the Positional-Aware Self-Attention. As

Table 4: Ablation study on the classifier-free guidance score.

s
w
0.1 1 2 3 4

3 39.01 34.79 32.61 30.41 29.74
35 35.67 31.89 29.61 27.73 27.10
4 31.80 28.18 26.61 25.24 24.66
4.5 32.64 29.49 27.41 25.21 24.71
5 34.44 30.45 28.77 26.59 26.03

Table 5: Ablation study on positional-aware attention.

Self-Attention FID-15k
with Br 24.66
w/o Br 33.03

Table 6: Ablation study on the full and unmasked latent tokens.

Latent Embeddings FID-15k
Unmasked Tokens 37.60
Full Tokens 25.66
Unmasked Tokens+Full Tokens 24.66
Table 7: Ablation study on the VAE decoders.
Decoder FID-15k
MSE 24.99
EMA 24.66
Table 8: Ablation study on the masking ratio.
Mask Ratio 0 0.1 0.2 0.3 0.4

FID-15k 26.28 25.53 26.38 26.12 2543

Mask Ratio 0.5 0.6 0.7 0.8 0.9

FID-15k 24.66 25.33 25.88 27.09 30.51
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described in Eq. 11, Positional-Aware Self-Attention
extends traditional self-attention by incorporating an
additional term, B,, which captures positional relationships
among all tokens. From the experimental results shown in
Table 5, it is evident that integrating B, into the multi-head
self-attention mechanism of IKDDIT significantly
enhances generation quality. Consequently, we adopt
Positional-Aware Self-Attention in the teacher encoder,
student encoder, and student decoder.

G.3. Full and Unmasked Latent Tokens

In IKDDIT, both full and unmasked latent embeddings
are input into the diffusion model during training. For
comparison, we also trained models using only full latent
embeddings and only unmasked latent embeddings, as
shown in Table 6. The results demonstrate that training
with both full and remaining unmasked latent embeddings
yields a clear improvement over the two alternative
approaches. Using only the unmasked latent embeddings
results in slower convergence, which we attribute to the
inconsistency between training and inference processes, as
inference in IKDDIT is based on diffusion rather than a
masked reconstruction process.

G.4. Comparison of VAE decoders

Table 7 compares the effectiveness of two pre-training
strategies for VAE decoders: MSE (Mean Squared Error)
and EMA (Exponential Moving Average). The MSE
approach results in an FID-15k score of 24.99, whereas the
EMA method achieves a superior score of 24.66. This
improvement underscores the benefits of using EMA,
which enhances generative quality by fostering a more
stable and consistent learning process for the VAE decoder.
The slight yet significant reduction in FID suggests that
EMA's smoothing effect on model parameters reduces
variance in updates during training, mitigating the risk of
convergence to suboptimal solutions. By averaging
parameters over time, EMA offers a more reliable and
steady representation, contributing to better convergence
behavior and higher-fidelity image reconstructions.

G.5. Wider Masking ratio.

The masking ratio defines the proportion of input
patches utilized during training. Table 8 and Figure 8
provide a comparative analysis of various masking ratios.
For IKDDIT, a 50% masking ratio proves to be optimal,
contrasting sharply with those commonly employed in
recognition models, such as the 75% ratio used in MAE [9]
and the 30% ratio in MDT [8]. We propose that image
generation models necessitate more extensive information
from a larger set of patches to produce high-quality outputs,
while recognition models focus on the most crucial patches
to extract semantic meaning effectively. This insight
implies that using different masking ratios can enable the
model to learn a more diverse range of contextual

representations.

H. More Generated Samples

Figures 9 to 14 present representative samples of overlay
map generation using our proposed IKDDiT model,
conditioned on equipment logs. These equipment logs
capture essential operational parameters and adjustments
across various stages, enhancing the model's contextual
understanding and enabling the synthesis of overlay maps
that accurately reflect specific equipment configurations
and conditions.

I. Detail Context of Equipment Logs

Figure 15 presents part of the equipment log during the
photolithography process, detailing critical parameters
such as exposure dose, focus offset, and stepper alignment
values. These parameters play an essential role in
maintaining precision across photolithography layers, as
any deviations can directly impact overlay accuracy and,
consequently, the yield. The log also records equipment
IDs, wafer positions, and time stamps, which are essential
for tracking equipment performance and identifying
potential sources of overlay errors. By analyzing this log
data, our model can gain insights into process variations
and make more informed adjustments, thereby enhancing
the overall accuracy of the overlay map predictions.
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Figure 10: Example of overlay map generated by IKDDiT under the condition of APxx01-C2-930Y-2, incorporating equipment logs.
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Figure 12: Example of overlay map generated by IKDDiT under the condition of BPxx02-C2-920A-2, incorporating equipment logs.
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EUV Exposure: Field 1 Complete | Exposure Time: 1 TEXt
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Figure 14: Example of overlay map generated by IKDDiT under the condition of APxx03-C2-930Y-2, incorporating equipment logs.
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[2023-12-25 18:45:00] Equipment ID: SPxx02 | Tool Group: Lithography | Reticle ID: 930Y-1 | Stage: ME1_PH | Part: IMEA46

[2023-12-25 18:46:10] Tool Log: Tool powered on | Initializing system

[2023-12-25 18:47:00] Calibration: Lithography Source Power Calibration Complete | Lithography Power = 178 W | Dose Control Stabilized

[2023-12-25 18:48:20] Process Recipe: LITHO_X250 | Wafer ID: WAF-41798 | Layer: M4 | Stepper Mode: Standard Precision

[2023-12-25 18:49:10] Exposure Parameters Set | Dose = 28 mJ/cm? | Wavelength = 13.5 nm | Focus = 0.49 pm | Numerical Aperture = 0.30

[2023-12-25 18:50:00] Reticle ID: 930Y-1 | Verified | Mask Alignment Completed

[2023-12-25 18:50:45] Pre-Exposure Alignment: Success | X Offset = 0.006 pm | Y Offset = 0.004 pm

[2023-12-25 18:51:30] Exposure Step Start | Field 1 | Wafer Stage Position: X = 0.010 mm, ¥ = 0.008 mm | Reticle Stage Position: X =0.012 mm, ¥ = 0.010 mm

[2023-12-25 18:52:00] Lithography Exposure: Field 1 Complete | Exposure Time: 1.32 sec | Shot Energy: 27.0 mJ/cm?

[2023-12-25 18:53:10] Wafer Stepper Movement: X = 0.015 mm, Y = 0.013 mm | Moving to Field 2

[2023-12-25 18:54:00] Exposure Step Start | Field 2 | Shot Energy = 27.2 mJ/cm?

[2023-12-25 18:55:30] Process Monitoring: Lithography Source Stability = 98.7% | Focus Drift = +0.004 pm

[2023-12-25 18:56:15] Temperature: Chamber = 23°C | Wafer Surface = 48°C

[2023-12-25 18:57:45] Error Detected: Focus Drift Out of Range | Focus = 0.52 ym | Threshold = £0.02 pm

[2023-12-25 18:58:10] Alarm Raised: Focus Drift Exceeded | Operator Notified

[2023-12-25 18:58:45] Corrective Action: Focus Recalibration | New Focus: 0.48 pm

[2023-12-25 18:59:30] Exposure Resumed | Field 3 | Shot Energy = 27.3 mJ/cm? | Focus = 0.48 pm

[2023-12-25 19:01:10] Reticle Temperature Monitoring: Reticle Surface = 56°C | Cooling System Stable

[2023-12-25 19:02:30] Process Completed | Total Fields Exposed: 35 | Total Exposure Time: 14 minutes

[2023-12-25 19:03:00] Process Recipe: LITHO_X250 Completed | Wafer ID: WAF-41798 Transferred fo Next Station

[2023-12-25 19:03:30] Lithography Source Status: Power Down | Maintenance Scheduled in 9 Hours

[2023-12-25 19:04:00] Tool Log: Equipment Status: Idle | Next Job Scheduled: WAF-41799

[2023-12-25 19:05:15] Environment Monitoring: Humidity Level = 45% | Airflow Rate = 0.2 m/s | HEPA Filter Status: Optimal

[2023-12-25 19:06:00] Tool Configuration Check: Stage Accuracy = +0.001 pm | Stage Speed = 500 mm/s

[2023-12-25 19:07:30] Maintenance Log: Lens Inspection Completed | No Contamination Detected | Lens Alignment: Precision Verified

[2023-12-25 19:08:45] Recipe Adjustment: New Dose = 29 mJ/cm? | Focus Adjusted to 0.48 pm | Target Overlay Accuracy: £1.5 nm

[2023-12-25 19:09:30] Alignment Verification: Reticle Alignment Shift = 0.002 pm | Auto-Adjustment Successful

[2023-12-25 19:10:15] Lithography Source Power Check: Power Level = 176 W | Stability = 99.1%

[2023-12-25 19:11:45] Temperature Alert: Chamber Temperature Rising | Current: 24°C | Cooling System Engaged

[2023-12-25 19:12:30] Exposure Step Start | Field 4 | Shot Energy = 27.5 mJ/cm? | Focus = 0.48 pm

I [2023-12-25 19:13:50] Wafer Inspection: Surface Defect Check Complete | No Defects Found | Uniformity: 98.8%

Figure 15: The examples of equipment log in photolithography process.
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