PoseSyn: Synthesizing Diverse 3D Pose Data from In-the-Wild 2D Data
Supplementary

A. Implementation Details

Implementation Details We selected three image-to-3D pose estimation models as our target pose estimators (TPEs): Hy-
brik [1], 3DCrowdNet [2], and 4DHumans [3]. All experiments were conducted utilizing each official code of 3DCrowdNet',
Hybrik” and 4DHumans”.

Specifically, for 3DCrowdNet, we downloaded a pre-trained model which was trained for 10 epochs on real datasets (e.g.,
Human36M [4], MuCo [5], MSCOCO [6], and MPII [7] datasets) with a learning rate of 1 x 10~%. We then applied our
data synthesis framework to augment the MPII dataset, creating a 3D pose dataset with 27,291 samples. We fine-tuned the
3DCrowdNet on this synthesized dataset with a batch size of 64 and a learning rate of 1 x 10~ for 10 epochs, utilizing both
real data and synthesized data.

In the case of 4DHumans model, we downloaded a pre-trained model which was trained for 1M iterations on real datasets
(e.g., Human36M, MPI-INF-3DHP [8], AVA [9], AIC [10], INSTA [11], MSCOCO, and MPII datasets) with a learning rate
of 1 x 10~*. We then applied our data synthesis framework to augment the MPII dataset, creating a 3D pose dataset with
27,872 samples. We fine-tuned the 4DHumans on this created dataset with a batch size of 32 and a learning rate of 1 x 10~°
for 200K iterations, utilizing both real data and created data.

Likewise for Hybrik, we downloaded a pre-trained model which was trained for 120 epochs on real datasets (e.g., Hu-
man36M, MPI-INF-3DHP, and MSCOCO datasets) with a learning rate of 1 x 10~3. We then applied our data synthesis
framework to obtain a synthesized 3D pose dataset consisting of 26,758 samples, and fine-tuned the Hybrik with a batch size
of 64 and a learning rate of 1 x 10~* for 40 epochs utilizing both real data and synthesized data. Note that each synthesized
3D dataset differs per model because challenging images are extracted from each TPE.

Additional parameters, including the number of challenging data (i.e., N¢), the number of non-challenging data (i.e.,
Nnc), and the filtering threshold 7, are provided in Tab. 1.

VLM Prompting In our proposed Semantic-guided Motion Generation (SMG) stage, we augments an identified challeng-
ing pose into motion sequences guided by both textual description and initial pose representation. To extract the textual
description of the challenging image, we leverage a VLM [12] to ask the question, “What is the motion of the someone
in the image? Please answer similar to {Text-to-Motion prompt examples}”, where {Text-to-Motion prompt examples} are
provided as follows:

— “A man kicks something or someone with his left leg.”

— “A person walking forward and then turns around.”

— “A person squats down then jumps.”

— “A person raises their right hand to their face.”

— “He is waving with his right hand.”

— “A person kicks something with their right foot.”

— “A running man hops over something a comes down to a walk.”

— “A man raises both arms, then kneels down.”

— “Person is using their left arm to dodge a punch.”

— “A person raised both their arms and started to clap.”

We visualize the results of VLM answers in Fig. 1.

lhttps ://github.com/hongsukchoi/3DCrowdNet_RELEASE
Zhttps://github.com/Jeff-sjtu/HybrIiK
3https ://github.com/shubham-goel/4D-Humans



Details for Orientation-aligned Motion Guidance PoseSyn synthesizes human animated images Ve = {Ic;}/, by using
non-challenging image Inc as reference image and generated motion sequences Mc = {Jélj}f:l as motion guidance. To
ensure natural human animation, we align the global orientation of M with the human orientation in Iyc. First, following
Champ [13]’s original method, we exploit 4DHumans to obtain camera parameters (i.e., focal length f and principal points
p) and SMPL parameters including global orientation #¢ € R?, pose #° € R%, shape 8 € R1Y, and translation £ € R? for
the reference image Inc, which is denoted as:

69,67, 3,t, f,p = 4DHumans(Iyc). (1)

As Champ utilizes rendered meshes of the motion sequences as motion guidance, we obtain SMPL parameters { QSG, L HSP’ e
from the 3D joint sequences M by applying an optimization method [14] O as follows:

{Hgl,l’ ng}’ZL:I = O(MC)’ ()

where SMPL parameters are represented in the Rodrigues’ rotation form [15]. To align the global orientation of M¢ with
the human orientation in Inc, we use the global orientation 0¢ of M as the initial global orientation for the first motion
sequence. For the remaining frames, we adjust the initial global orientation based on the relative angle between the global
orientations of the motion sequences. Specifically, let’s denote T;._,.(-) as the conversion from the Rodrigues’ rotation form
to Euclidean one, Rg; = Tr—>e(98 l) as the rotation matrix for the global orientation represented in Euclidean space, and then
the modified global orientation sequences are formulated as follows:

Onoat = Ty e (Rsi(Rs 1) Rinir), 1=2,..., L, 3)

where Hgod 1= O is the initial global orientation and Ry, = TTHE(HG) is its representation in Euclidean space. Then, we
acquire orientation-aligned mesh sequences { M eshl}le, with each orientation-aligned mesh defined as:

Mesh; = SMPL(6S.,, 6%, 8,1). )

mod,»

Finally, we project each mesh onto the image plane by using the camera parameters for the reference image Inc to obtain a
sequence of orientation-aligned rendered mesh {Irender, } 1L=1’ where each rendered mesh is calculated as follows:

Irender,l = PI'Oj(MGShl, fap) o)

This rendered mesh sequence serves as motion guidance for animating a human in the reference image Inc. For more details,
please refer to [13].



Symbol Description dimension Value
Notation related to dataset
D 2D Pose Dataset. In our experiments, we used MPII dataset. - -
Dc A set of challenging dataset identified through EEM. - -
Dne A set of non-challenging dataset identified through EEM. - -
Notation related to image
I Input image (256, 256, 3) -
w Image width - -
H Image height - -
Ic Challenging image (256, 256, 3) -
Inc Non-challenging image (256, 256, 3) -
Notation related to joint
The number of 2D joints. - 16
The number of 3D joints. - 24
Ground truth 2D pose. (16, 2) -
2D projection of the 3D pose predicted on the input image through TPE. (16, 2) -
3D pose predicted on the input image through TPE. (24,3) -
3D pose predicted on the challenging image through TPE. (24,3) -
3D pose predicted on non-challenging image through TPE. (24,3) -
J.n Body part index values of 2D pose (e.g., right shoulder, right leg, left shoulder, etc.). 2) -
J3Dn Body part index values of 3D pose (e.g., right shoulder, right leg, left shoulder, etc.). 2) -
Notation related to EEM
Err Error value calculated by Eq. (1) to identify challenging dataset. - -
Ankle(1), wrist(1),
W, Hyperparameter considering the importance of joint parts in Err value calculation. (16) Elbow(0.5), knee(0.5),
Hip(0.25), shoulder(0.25)
Topg, | Operation used to identify Kc challenging dataset Dc. - 500
Topy,. | Operation used to identify Knc non-challenging dataset Dnc. - 200
Notation related to PAM
MTRinie | Initial motion representation obtained by repeating mis-predicted pose over time step 7. (30, 263) -
ZMR Latent features of initial motion sequences obtained from encoder in VQ-VAE. (7,512) -
SMRr Index values of initial motion sequences obtained through codebook quantization. 7) -
F Preprocessing method [16] for motion representation. - -
T Time step for acquiring a initial motion representation from a initial pose. - 30
& Encoder of Motion VQ-VAE in T2M-GPT [14]. - -
M Length of initial motion sequences obtained by dividing 7" by 7. - 7
T Temporal downsampling factor of Encoder &. - 4
€ext Text embedding of textual description processed by CLIP encoder [17]. (512) -
L Length of augmented challenging motion sequence Mc. - -
Mc Augmented challenging motion sequence obtained through transformer under condition of both eey and Spx.- (L, 22) -
Ve Human animated video obtained through [13] with motion guidance M and reference image Inyc. (L, 256, 256, 3) -
Notation related to Error & Filtering
Errsp, | Error value calculated by Eq. (6) in filtering stage. - -
T Threshold value used in filtering stage. - 120
Remaining notations
TPE Top-down human pose estimation model (e.g., 3DCrowdNet [2], Hybrik [1], and 4DHumans [3]). - -
f Focal length used in 2D projection of 3D pose. 2) 3DCrw0dNet(5009), 4DHumans(5000/256 x W),
Hybrik(1000 /256 x W)
p Principal point used in 2D projection of 3D pose. 2) Bounding box center

Table 1. Notation Table.
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Figure 1. VLM Prompting. We visualize challenging image and extracted textual description pairs.

B. Extendibility of PoseSyn

To ensure a fair comparison with the baselines, we utilized the MPII dataset [7], which was originally used to pre-train the
TPE (3DCrowdNet), as the basis for synthesizing the 3D pose dataset throughout our experiments. However, our methodology
is not restricted to the data used for pre-training the TPE; rather, it can augment any easily accessible in-the-wild unlabeled
images into a 3D pose dataset, showcasing its flexibility and broad applicability.

To validate this capability, we assigned pseudo-label annotations to each image in the dataset using either a 2D pose
estimator [18] or a 3D pose estimator [19], rather than relying on the 2D GT poses from the MPII dataset. In the case of 2D
pseudo-labeling, the EEM module calculated the error as outlined in Eq. (1), which was then used to identify challenging and
non-challenging datasets as expressed in Eq. (2) and Eq. (3), respectively. For the 3D pseudo-labeling, the criterion metric
Err was computed by replacing 2D joints with their 3D counterparts in Eq. (1), followed by the same methodology for
identifying challenging and non-challenging samples.

3DPW EMDB CMU_171204 CMU_171026 HuMMan Mean
MPJPE] \ PA-MPJPE| | MPJPE| \ PA-MPJPE| | MPJPE| \ PA-MPJPE| | MPJPE| \ PA-MPJPE| | MPJPE| \ PA-MPJPE| | MPJPE| \ PA-MPJPE|
Real-only 81.7 51.1 115.8 71.2 108.8 72.5 110.7 70.4 98.9 65.8 103.2 66.2
3D Pose Estimator 78.9 49.8 112.5 69.9 103.6 69.5 106.6 69.9 96.5 63.9 99.6 64.6
2D Pose Estimator 78.5 49.7 112.2 69.9 103.3 69.6 106.4 68.5 93.1 63.7 98.7 64.3
Ground Truth 77.4 48.9 111.0 68.3 101.0 67.3 105.0 67.9 93.1 62.3 97.5 62.9

Table 2. EEM Approach Variants. We report results in the performance improvement of TPE when trained with synthesized dataset
obtained through different EEM approaches: 3D pose pseudo-labeling, 2D pose pseudo-labeling, and ground truth (GT) annotations, where
GT annotations represent the original PoseSyn method. The Real-only model, trained exclusively on real datasets, is used as the reference
model and fine-tuned with each synthesized dataset. MPJPE and PA-MPJPE metrics are reported across multiple datasets to demonstrate
the impact of the synthesis methods on TPE performance.



As shown in Tab. 2, our method demonstrates improved performance compared to a model trained solely on a real dataset
(i.e., Real-only). Even the approaches that utilize pseudo-label annotations enhance the generalization performance of TPE
trained only with real data. This result highlights PoseSyn’s potential for leveraging a broader range of unlabeled images,
which could significantly expand the diversity of human appearances and challenging poses. Furthermore, the performance
improvements observed in 2D pose pseudo-labeling approaches are superior to those in 3D pose pseudo-labeling. This dis-
crepancy arises due to the added complexity of 3D pose pseudo-labeling, which considers depth in three-dimensional space,
potentially reducing accuracy when identifying problematic poses in the EEM framework.

Finally, to demonstrate that our method can even leverage various datasets beyond the MPII dataset, we showcase our syn-
thesized dataset which incorporates DeepFashion [20] dataset for reference images and UCF101 [21] dataset for challenging
poses, as shown in Fig. 2. The DeepFashion dataset features humans with diverse appearances, making it an excellent choice
for reference images. On the other hand, the UCF101 dataset consists of various in-the-wild human poses, making it attractive
for use as challenging poses.
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Figure 2. Our synthesized Data. We demonstrate the extendibility of our approach in augmenting any easily accessible in-the-wild unla-
beled images into a 3D pose dataset. Here, we incorporate DeepFashion dataset (as reference images) and UCF101 dataset (as challenging
poses) to create our synthesized 3D pose dataset.




C. More Results

Reference Images in Motion-guided Video Generation We utilize the non-challenging images identified through EEM
as reference images in the Motion-guided Video Generation stage. Using challenging images as reference can hinder the
motion-guided generative model’s [13] ability to perform parametric shape alignment in human animation. This misalignment
significantly degrades the quality of the animated images, as shown in Fig. 3.

(b) Generated images

Figure 3. Experiments on Reference Image in Motion-guided Video Generation. The first row displays the challenging images identified
through EEM, while the second row illustrates the generated images when these challenging images are served as reference images for the
human animation model.

Filtering Stage Even when using non-challenging images as references, the motion-guided video generation model oc-
casionally leads to images with artifacts, such as blending humans with the background or missing joints. We present the
examples of images removed through our filtering process in Fig. 4.

(b) Vanishing limb

Figure 4. Necessity of Filtering Stage. The human animation model occasionally generates images with visual artifacts, including either
(a) the unnatural blending of human figures with their backgrounds or (b) disappearance of some joints. These issues highlight the necessity
of the filtering stage in our framework. All presented images are examples of filtered-out samples during the stage.



Diversity in Synthesis Our method offers promising advantage of augmenting a single reference image through various
challenging poses, as well as augmenting a single problematic pose through various reference images with different view-
points, human appearances, and backgrounds. This dual capability allows for the creation of a highly diverse dataset. We
visualize the synthesized data samples in Fig. 5 and Fig. 6.

Reference Images

Figure 5. Visualization of Our Synthesized Dataset with Various Combinations. The first column on the far left displays non-
challenging images identified through EEM, which are served as reference images. On the other hand, the top row presents challenging
images with problematic poses, also identified through EEM, where these poses are augmented into challenging motion sequences via
MSM. The remaining images are synthesized data samples created by combining the non-challenging images with the challenging poses,
resulting in diverse datasets with varied appearances, poses, and backgrounds.
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Figure 6. Visualization of Our Synthesized Dataset. Our framework synthesizes dataset consisting of highly diverse image sets, featuring
various backgrounds, human appearances, and challenging poses.



D. Additional Qualitative Results

We present additional qualitative comparison results using three types of TPEs (i.e., 3DCrowdNet, Hybrik, and Vanilla) in
Fig. 7, Fig. 8, and Fig. 9.
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Figure 7. Qualitative Results (3DCrowdNet). Our approach improves generalization of 3DCrowdNet trained solely on real dataset (i.e.,
Real-only) across various benchmarks. Red boxes highlight areas of incorrect predictions in the model trained with real-only data.
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Figure 8. Qualitative Results (Hybrik). Our approach improves generalization of Hybrik trained solely on real dataset (i.e., Real-only)
across various benchmarks. Red boxes highlight areas of incorrect predictions in the model trained with real-only data.



Input image  Real-only Ours Input image  Real-only Ours Input image  Real-only Ours

Background & Occlusion
JHMDB EMDB

3DPW

EMDB

Challenging Pose
LSPET

CMU1026

Multi-View
CMU1204

Figure 9. Qualitative Results (4DHumans). Our approach improves generalization of Vanilla trained solely on real dataset (i.e., Real-
only) across various benchmarks. Red boxes highlight areas of incorrect predictions in the model trained with real-only data.
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