Appendix of QR-LoRA: Efficient and Disentangled Fine-tuning via QR
Decomposition for Customized Generation
(Supplementary Material)

A. Theoretical Analysis of QR-LoRA Parame-
ter Disentanglement

A.1. Minimal Frobenius Norm Property

Lemma 1 (Minimal Frobenius Norm Property of
QR-LoRA Parameterization). Consider a weight ma-
trix W € R™ " with a low-rank update AW = QAR,
where Q € R™*" is a column-orthogonal matrix (i.e.,
QTQ = I.), and AR € R™ ™ represents trainable param-
eters. For any rank-r update AW, the parameterization
AW = QAR achieves the minimal Frobenius norm if and
only if Q) is column-orthogonal, yielding:

[AW][r = |QAR|r = [| AR F, ®

with AR having a unique solution under orthogonal con-
straints.

Proof. Leveraging the norm-preserving property of orthog-
onal matrices, for any column-orthogonal (), we have:

[QAR|r = /u(ARTQTQAR)

= \/u(ARTAR) ®
= [|AR|F,

consequently, the Frobenius norm of the parameterized up-
date AW = QAR is equivalent to the norm of AR. O

This equivalence has profound implications for our
framework:

* Minimal Intervention Principle: The uniqueness of
the minimal norm solution reflects the optimal task-
specific transformation. For any target weight update
AW, we seek its representation in the form of QAR,
where () is column-orthogonal. Among multiple so-
lutions satisfying the task objective, the minimal norm
solution maximally preserves the model’s original gen-
eralization capabilities while introducing only neces-
sary task-specific transformations.

 Task-Specific Feature Encoding: The minimal norm
property of AR prevents overfitting by incorporating
only the minimal changes required for the specific task.
This principle ensures that A R exclusively encodes in-
formation relevant to the current task, avoiding the in-
corporation of general features shared across different
tasks.

A.2. Gradient Update Decoupling Analysis

Theorem 1 (Statistical Independence of Orthogonal Projec-
tions). In a Hilbert space with orthogonal basis, projections
along different feature directions are statistically indepen-
dent. Specifically, for any two orthogonal directions v; and
v (U,L-ij = 0), the projections of a random vector x onto
these directions, denoted as P;(x) and P;j(x) respectively,
are statistically uncorrelated:

E[P;(z)P;(x)] =0, (10)
where E[-] denotes the expectation operator.

In the context of Hilbert spaces with orthogonal bases,
projections along different feature directions exhibit statis-
tical independence. This fundamental property plays a cru-
cial role in our QR-LoRA framework, where the () matrix
defines a set of orthogonal basis vectors, and the A R matrix
represents coordinates in this orthogonal basis system. The
gradient update mechanism in our framework demonstrates
how this orthogonality naturally leads to feature disentan-
glement. For a loss function £(W) with the parameteri-
zation W = Weomp + Q(R + AR), the gradient update
mechanism exhibits the following key property:

The gradient of the loss with respect to AR is given by:
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Given the column orthogonality of Q (QTQ = I, this
gradient formulation reveals that 9L/JAR is an orthog-
onal projection of 9L/OW onto the column space of Q.
This projection mechanism is particularly significant when
training for different tasks (e.g., style or content adaptation),
as these tasks inherently optimize distinct visual attributes.
The orthogonality of their gradient directions in the high-
dimensional space is preserved and enhanced through the @
matrix projection, causing different AR matrices to evolve
along approximately orthogonal trajectories during training.

To provide a comprehensive understanding of QR-
LoRA’s theoretical advantages, we further analyze its for-
ward pass and gradient computation mechanisms in com-
parison with existing methods. Table 2 presents a detailed
comparison of the forward pass and gradient computation
between QR-LoRA and other representative approaches.

As shown in Table 2, QR-LoRA fundamentally differs
from previous approaches in both its forward pass compu-
tation and gradient update mechanism. While traditional
LoRA [17] and Ortha [43] rely on random initialization and



Table 2. Summary of forward pass and gradient computation in different methods. This comparison highlights QR-LoRA’s unique
orthogonal projection-based gradient update mechanism, which naturally leads to more effective feature disentanglement compared to

traditional approaches.
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Figure 10. Rank sensitivity analysis. Our method maintains sta-
ble performance across different rank settings, demonstrating its
robustness to this hyperparameter choice.

direct parameter updates, our method leverages orthogonal
decomposition to achieve more principled and effective pa-
rameter updates.

A.3. Theoretical Interpretation of Experimental
Observations

* Stability of ): The stability of () matrices across
different tasks stems from their construction through
SVD-based QR decomposition, where their directions
are primarily determined by the underlying data distri-
bution, leading to consistently high similarities.

* Independence of AR: The orthogonal projection
property ensures that A R matrices exclusively capture
task-specific information, resulting in significant vari-
ations that reflect the unique characteristics of different
tasks.

B. Additional Implementation Details
B.1. Implementation Details of Compared Methods.

In our comprehensive evaluation, we implement ZipLoRA
based on an unofficial implementation”, configuring it with
rank » = 64 and learning rate 5e-5. For StyleAligned and

“https://github.com/mkshing/ziplora-pytorch

B-LoRA, we adopt their respective default configurations
from the original papers. Additionally, we employ the stan-
dard DreamBooth-LoRA implementation for experiments
on SD3 and FLUX.1-dev models, maintaining consistent
hyperparameters (r = 64, Ir=1e-4) across all comparisons
to ensure fairness.

Model-specific Training Configurations. Across all
backbone models, we exclusively inject QR-LoRA modules
into the main generative networks (e.g., UNet, MM-DiT)
while keeping the text encoders frozen during training. For
different backbone models, we inject QR-LoRA modules
into specific layers as shown in Table 3:

* SDXL: We inject our QR-LoRA modules into the self-
attention layers of UNet only, focusing on the core ar-
chitecture components. For inference, we use 50 de-
noising steps while keeping other parameters at their
default values.

* SD3: Following the model architecture, we apply our
method to both standard attention blocks and addi-
tional projection layers unique to SD3. During infer-
ence, we employ 28 denoising steps with default con-
figurations for other parameters.

¢ FLUX.1-dev: We extend the injection to include both
attention mechanisms and feedforward networks, cov-
ering the expanded architecture of FLUX.1-dev. Sim-
ilar to SD3, we use 28 denoising steps for inference
while maintaining default settings for other parame-
ters.

C. Additional Analysis Details and Results

C.1. Experimental Setup for Matrix Similarity
Analysis

To comprehensively evaluate the feature disentanglement
capabilities of our QR-LoRA framework, we conduct ex-
tensive experiments using 27 randomly selected image pairs
(sample index from 0-26), as visualized in Figure 13. For
each image pair, we analyze three different training strate-
gies: (1) a QR decomposition variant where both ) and



Table 3. Injection layer types of QR-LoRA across different
backbone models. This table details the specific architectural
components where our QR-LoRA modules are injected during
training across different foundation models (SDXL, SD3, and
FLUX.1-dev), demonstrating the practical implementation of our
method’s disentangled fine-tuning approach.

SDXL SD3 FLUX.1-dev
to_k attn.to_k attn.to_k

to_q attn.to_q attn.to_q

to_v attn.to_v attn.to_v
to_out.0 attn.to_out.0 attn.to_out.0

attn.add_k_proj
attn.add_q_proj
attn.add_v_proj
attn.to_add_out

attn.add_k_proj
attn.add_q_proj
attn.add_v_proj
attn.to_add_out

ff.net.0.proj

ff.net.2
ff_context.net.0.proj
ff_context.net.2

R matrices are directly fine-tuned, (2) a AR-only update
strategy, and (3) vanilla LoRA with A and B matrices. The
cosine similarities between corresponding matrices across
different training instances are computed and recorded in
Table 4, with their distributions visualized in Figure 2 of
the main text. This experimental design allows us to ana-
lyze the inherent properties of different matrices and their
roles in feature representation.

C.2. Cross-Model Analysis of Matrix Properties

We extend our analysis across three state-of-the-art text-to-
image models: SDXL, SD3, and FLUX.1-dev, to validate
the model-agnostic nature of our approach. As shown in
Figure 14, Figure 16, and Figure 15, the layer-wise cosine
similarity patterns remain consistent across different model
architectures, demonstrating the generalizability of our QR-
LoRA framework. Specifically:

¢ () Matrix Properties: Across all models, () matri-
ces maintain remarkably high similarities (0.90-0.99),
indicating their role as stable orthogonal bases for fea-
ture representation.

* R Matrix Characteristics: The directly fine-tuned
R matrices show moderate but significant similarities
(0.79-0.89), suggesting their inherited structural infor-
mation from the original weights.

* AR Matrix Behavior: In contrast, AR matrices con-
sistently exhibit substantially lower similarities (-0.17-
0.25), validating their effectiveness in capturing task-
specific features independently.

User Study of QR-LoRA

Style Content

Task: Please evaluate the fused image based on aesthetics and quality, considering the style and content
image.
or very bad, 5 for very good.

very bad(0; very good(5)

very good(s:

Figure 11. User study interface. Screenshot of our evaluation
interface where participants rate generated images on a 0-5 scale
based on content preservation and style transfer quality.

C.3. Statistical Analysis of Matrix Similarities

The numerical results presented in Table 4 provide a de-
tailed quantitative perspective on the similarity patterns.
The data reveals several key insights:

e The maximum similarity values for () matrices con-
sistently approach 1.0 (0.9998-0.9999), with minimum
values remaining above 0.90, demonstrating the stabil-
ity of the orthogonal basis.

* R matrices show maximum similarities above 0.99
but with lower minimum values (0.79-0.89), reflect-
ing their role in capturing task-relevant transforma-
tions while maintaining some degree of shared struc-
ture.

* AR matrices exhibit significantly lower similarity val-
ues, with maximums below 0.26 and minimums reach-
ing -0.17, quantitatively confirming their capacity for
independent feature representation.

¢ In comparison, traditional LoRA’s A matrices show
consistently high similarities (0.77-1.0), while B ma-
trices display moderate to low similarities (0.15-0.38),
highlighting the advantages of our orthogonal decom-
position approach.
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Figure 12. Additional visualization results on different back-
bone models. Extended demonstration of QR-LoRA’s genera-
tion results across SDXL, SD3, and FLUX.1-dev models, fur-
ther validating the consistent high-quality performance and model-
agnostic nature of our approach. These supplementary examples
provide a more comprehensive view of our method’s capabilities
across diverse model architectures, complementing the results pre-
sented in Figure 6.

This comprehensive analysis validates the theoretical
foundations of our QR-LoRA framework and demonstrates
its effectiveness in achieving feature disentanglement across
different model architectures. The consistent patterns ob-
served in both layer-wise visualizations and statistical dis-
tributions support our design choice of focusing on AR up-
dates for efficient and clean feature separation.

D. Additional Experimental Results and Dis-
cussion

D.1. Ablation Studies

Scaling coefficient. To comprehensively evaluate the ro-
bustness and flexibility of our QR-LoRA framework, we
conduct extensive ablation studies on scaling coefficients
across three different backbone models: SDXL, SD3, and
FLUX.1-dev. Our experiments systematically explore co-
efficient combinations (i.e., A., As) ranging from 0.5 to 1.0
with intervals of 0.1, resulting in 36 distinct combinations
for each model. This granular analysis reveals several key
insights about our method’s behavior and capabilities.

As demonstrated in Figures 17, 18, and 19, our approach
maintains consistent generation quality across different co-
efficient settings while enabling fine-grained control over
the content-style fusion process. The smooth transitions ob-
served between different coefficient combinations indicate
that our QR decomposition effectively disentangles content

and style features, allowing for intuitive and stable inter-
polation between these attributes. Notably, this behavior
remains consistent across all three model architectures, val-
idating the model-agnostic nature of our approach.

Furthermore, our experiments demonstrate that our
method exhibits robust performance across a wide range of
scaling coefficients after obtaining the disentangled deltaR
matrices. This scaling exploration serves as a deeper inves-
tigation into our method’s capabilities, rather than a limita-
tion. It’s worth noting that such scaling strategies are gen-
erally applicable to any LoRA-based methods, showcasing
the versatility of our approach in achieving various levels of
content preservation and style transfer effects.

Rank. To comprehensively evaluate the robustness of
our method, we conduct a sensitivity analysis across dif-
ferent rank settings. As shown in Figure 10, our method
demonstrates consistent performance and stable generation
quality across various rank values, indicating its inherent
robustness to this hyperparameter. We adopt rank=64 for
all experiments in the main paper, as it strikes an optimal
balance between computational efficiency and generation
quality. This choice aligns well with common practices in
the literature [8, 49] and proves to be a reliable setting for
most applications.

D.2. User Study

To evaluate the perceptual quality of our results, we con-
ducted a comprehensive user study with 47 participants (40
males and 7 females). The participants represented a di-
verse demographic, with ages ranging from 22 to 45 years
(mean age: 31.2). Among the participants, 15 were com-
puter vision researchers, 12 were professional designers,
and 20 were general users with basic knowledge of image
editing. This diverse composition ensured a balanced eval-
uation from both technical and aesthetic perspectives.

Each participant was asked to rate the quality of gen-
erated images from different methods on a scale of 0-5,
where O indicates poor quality and 5 indicates excellent
quality. To facilitate the evaluation process, we designed
an intuitive rating interface (shown in Figure 11) that al-
lows participants to easily assess and score the generated
images. The evaluation criteria focused on both content
preservation and style transfer aspects. The ratings reported
in Table 1 represent the average scores given by participants
for each method. The consistently higher ratings achieved
by our method (4.07 for SDXL, 4.14 for SD3, and 3.96
for FLUX.1-dev) compared to baseline approaches demon-
strate the superior perceptual quality across different back-
bone models.

D.3. Additional Qualitative Results

To comprehensively demonstrate the effectiveness and ver-
satility of our QR-LoRA framework, we present extensive
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Figure 13. Detailed experimental setup for matrix similarity comparison in Figure 2. We conduct experiments on 27 randomly
selected image pairs to analyze the properties of different matrices in our QR-LoRA framework. For each image in the pairs, we train two
types of LoRA adaptations: one using QR decomposition where both ) and R matrices are directly fine-tuned and another using the AR
formulation. We then compute the cosine similarities between () matrices, R matrices, and AR matrices across all injection layers in the

SDXL model.

qualitative results across different backbone models and di-
verse application scenarios. First, we conduct a thorough
comparative analysis through Figure 20, which showcases
our method’s superior performance against state-of-the-art
approaches across SDXL, SD3, and FLUX.1-dev models.
The results consistently demonstrate QR-LoRA’s ability to
achieve better content preservation while maintaining high-
fidelity style transfer, regardless of the underlying model
architecture.

To further validate the model-agnostic nature of our ap-
proach, we present a comprehensive set of generation re-
sults across different backbone architectures. Figures 21,
22, and 23 showcase diverse generation results on SDXL,
demonstrating our method’s capability in handling various
challenging scenarios while maintaining high visual quality
and style fidelity. The results span a wide range of content
types and artistic styles, from intricate architectural details
to subtle texture variations.

Extending our analysis to other backbone architectures,

Figure 24 presents generation results on SD3, while Fig-
ure 25 shows results using FLUX.1-dev as the backbone.
These examples demonstrate that QR-LoRA maintains its
effectiveness across different model architectures, consis-
tently producing high-quality results that effectively bal-
ance content preservation and style transfer.

Collectively, these results validate the robustness and
generalization capability of our approach across diverse
scenarios. The consistent high-quality performance across
different content types (e.g., portraits, objects) and artis-
tic styles (e.g., watercolor, digital art) demonstrates QR-
LoRA’s effectiveness in handling complex geometric struc-
tures, fine-grained textures, and dramatic style variations.
This comprehensive evaluation further supports the model-
agnostic nature of our method and its potential for broad
application in various image generation and style transfer
tasks.



Table 4. Numerical results of matrix similarity comparison in Figure 2. This table presents the detailed cosine similarity values for Q
matrices, R matrices, AR matrices, A matrices, and B matrices from 27 pairs of image training data. For each image pair (i.e., sample
index), we compute the cosine similarities across all injection layers in the SDXL model and record both the maximum (Qmazs Rmazs

ARmazs Amazs Bmaz) and minimum (Qmin, Rmin, ARmin, Amin, Bmin) similarity values.

Sample Index Qmam Qmin Rmam Rmin AR?’naz A}zmin Amaz Amzn Bmaz Bmzn
0 0.9999 0.9787 0.9997 0.8409 0.1657 -0.1139 1.0000 0.8046 0.3615 -0.0355
1 0.9999 09786 0.9997 0.8253 0.1632  -0.1223 1.0000 0.7970 0.3249 -0.0625
2 0.9999 0.9682 0.9997 0.8391 0.1135 -0.1038  1.0000 0.8161 0.3198 -0.0826
3 0.9998 0.9311 0.9996 0.8104 0.1959  -0.1335 1.0000 0.8075 0.2322 -0.0565
4 0.9998 0.9313 0.9996 0.7993 0.1241 -0.0818 1.0000 0.8020 0.2295 -0.0626
5 0.9998 0.9055 0.9997 0.8143 0.1529  -0.0872 1.0000 0.8144 0.2226 -0.0558
6 0.9998 0.9679 0.9997 0.8235 0.1566  -0.0581 1.0000 0.7917 0.2113 -0.0807
7 0.9999 0.9680 0.9997 0.8129 0.1421 -0.0699 1.0000 0.8126 0.2145 -0.0783
8 0.9999 0.9761 0.9997 0.8187 0.1257  -0.0913 1.0000 0.8053 0.1898 -0.2033
9 0.9999 0.9709 0.9998 0.8441 0.1749  -0.1036 1.0000 0.8272 0.3044 -0.1188
10 0.9999 0.9741 0.9998 0.8245 0.1500 -0.0783 1.0000 0.8163 0.2070 -0.0793
11 0.9999 0.9792 0.9998 0.8833 0.1399  -0.0611 1.0000 0.8379 0.1525 -0.1278
12 0.9999 0.9765 0.9997 0.8485 0.1816  -0.1094 1.0000 0.8253 0.2499 -0.0961
13 0.9999 0.9793 0.9998 0.8216 0.2493 -0.0463 1.0000 0.8164 0.1490 -0.1374
14 0.9999 0.9854 0.9999 0.8894 0.2067  -0.0933 1.0000 0.8332 0.1817 -0.1316
15 0.9998 0.9724 0.9996 0.8410 0.1756  -0.1686 1.0000 0.8416 0.3820 -0.0801
16 0.9998 0.9752 0.9996 0.8186 0.1851 -0.1050 1.0000 0.8361 0.2329 -0.0636
17 0.9998 0.9807 0.9997 0.8818 0.1262  -0.0695 1.0000 0.8413 0.2125 -0.1462
18 0.9999 0.9055 0.9996 0.8340 0.2539  -0.0760 1.0000 0.8346 0.3847 -0.2045
19 0.9999 0.9054 0.9997 0.8408 0.1209  -0.0420 1.0000 0.8398 0.2905 -0.0762

20 0.9999 0.9053 0.9996 0.8339 0.1705 -0.0540 1.0000 0.8298 0.2734 -0.0548
21 0.9998 0.9045 0.9995 0.8040 0.2042  -0.0466 1.0000 0.7727 0.1746 -0.0739
22 0.9998 0.9044 0.9995 0.8095 0.1441 -0.0716  1.0000 0.7714 0.1531 -0.1031
23 0.9998 0.9045 0.9995 0.7992 0.1473 -0.0588 1.0000 0.7853 0.1558 -0.0861
24 0.9998 0.9055 0.9996 0.8272 0.1711 -0.0512  1.0000 0.8034 0.1969 -0.0806
25 0.9998 0.9053 0.9996 0.8207 0.1686  -0.0851 1.0000 0.8147 0.2685 -0.0401
26 0.9998 0.9053 0.9996 0.8134 0.1719  -0.0850 1.0000 0.8108 0.2691 -0.0488

D.4. Ability to Re-contextualize

Our method not only excels at fusing content and style but
also enables further customization through text prompts.
While maintaining the high-quality integration of content
and style elements, our approach supports flexible scene
manipulation through additional textual instructions, as
shown in Figure 26. For instance, given a content image of
adog and a specific artistic style, we can generate variations
like "wearing a hat” or “riding a bicycle” while preserving
the desired style characteristics. This re-contextualization
capability is particularly valuable in practical artistic ap-
plications, as it allows artists to explore diverse creative
possibilities while maintaining consistent stylistic elements
across different scenarios.

D.S. The End

We anticipate that our model-agnostic, low-rank efficient
fine-tuning approach will provide a versatile solution for fu-

sion tasks requiring robust disentanglement properties, such
as the fusion of arbitrary style and content. This stands in
contrast to the field’s ongoing trend of pursuing specific dis-
entanglement properties within particular models.
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Figure 14. Extended analysis of cosine similarities under SDXL model, complementing Figure 3. We replicate the similarity analysis
experiment (sample index from 0 to 4) from Figure 3 using the SDXL backbone model to validate the generalization of our findings. The
left panel shows the layer-wise cosine similarity trends across different training strategies, consistent with our main results. Additionally,
we provide histogram distributions of similarity values in the right panel, offering a statistical perspective on the similarity patterns. This
comprehensive visualization further supports our theoretical analysis by demonstrating that the observed matrix properties are consistent
across different model architectures.
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Figure 15. Extended analysis of cosine similarities under FLUX.1-dev model, complementing Figure 3. We replicate the similarity
analysis experiment (sample index from O to 4) from Figure 3 using the FLUX.1-dev backbone model to validate the generalization of our
findings. The left panel shows the layer-wise cosine similarity trends across different training strategies, consistent with our main results.
Additionally, we provide histogram distributions of similarity values in the right panel, offering a statistical perspective on the similarity
patterns. This comprehensive visualization further supports our theoretical analysis by demonstrating that the observed matrix properties
are consistent across different model architectures.
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Figure 16. Extended analysis of cosine similarities under SD3 model, complementing Figure 3. We replicate the similarity analysis
experiment (sample index from O to 4) from Figure 3 using the SD3 backbone model to validate the generalization of our findings. The
left panel shows the layer-wise cosine similarity trends across different training strategies, consistent with our main results. Additionally,
we provide histogram distributions of similarity values in the right panel, offering a statistical perspective on the similarity patterns. This
comprehensive visualization further supports our theoretical analysis by demonstrating that the observed matrix properties are consistent
across different model architectures.
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Figure 17. Comprehensive ablation study on scaling coefficients for content-style fusion based on SDXL. We demonstrate the gener-
ation results under various combinations of content and style scaling coefficients. The experiments validate the flexibility and robustness
of our approach in achieving fine-grained control over content-style fusion through different coefficient combinations. Please zoom in to
view details.
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Figure 18. Comprehensive ablation study on scaling coefficients for content-style fusion based on SD3. We demonstrate the generation
results under various combinations of content and style scaling coefficients. The experiments validate the flexibility and robustness of our
approach in achieving fine-grained control over content-style fusion through different coefficient combinations. Please zoom in to view
details.



Figure 19. Comprehensive ablation study on scaling coefficients for content-style fusion based on FLUX.1-dev. The experiments val-
idate the flexibility and robustness of our approach in achieving fine-grained control over content-style fusion through different coefficient
combinations. Please zoom in to view details.
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Figure 20. Extended qualitative comparison results. Comparison of QR-LoRA against state-of-the-art methods on SDXL, SD3, and
FLUX.1-dev models, demonstrating consistent superior performance across different scenarios. Please zoom in to view details.
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Figure 21. Diverse generation results based on SDXL. Additional examples showcasing QR-LoRA’s capability in handling various
style-content combinations. Our method successfully preserves intricate content details while effectively transferring diverse artistic styles,
from painterly effects to digital art aesthetics. Please zoom in to view details.
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Figure 22. Diverse generation results on SDXL. Additional examples showcasing QR-LoRA’s capability in handling various style-
content combinations. Our method successfully preserves intricate content details while effectively transferring diverse artistic styles, from
painterly effects to digital art aesthetics. Please zoom in to view details.
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Figure 23. Diverse generation results on SDXL. Additional examples showcasing QR-LoRA’s capability in handling various style-
content combinations. Our method successfully preserves intricate content details while effectively transferring diverse artistic styles, from
painterly effects to digital art aesthetics. Please zoom in to view details.
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Figure 24. Diverse generation results on SD3. Additional examples showcasing QR-LoRA’s capability in handling various style-content
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Figure 25. Diverse generation results on FLUX.1-dev. Additional examples showcasing QR-LoRA’s capability in handling various
style-content combinations. Our method successfully preserves intricate content details while effectively transferring diverse artistic styles,
from painterly effects to digital art aesthetics. Please zoom in to view details.
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Figure 26. Demonstration of our method’s re-contextualization capability. Given a content image and a style reference, our approach
can generate variations through additional text prompts while maintaining style consistency. The examples show how different textual

instructions (e.g., "wearing a hat”, “riding a bicycle”) guide the generation process to create diverse scenarios while preserving the original
style characteristics.



