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In this supplementary material, we begin by providing
a proof of the equivariance of the Gram-Schmidt process
(Sec. 1). Next, we offer a detailed description of our pro-
posed dataset (Sec. 2). We then outline the pipeline for
point cloud canonicalization (Sec. 3). Following this, we
present a comparison with the scanning range of the Mul-
Ran dataset and additional visualization results of the Ox-
ford Radar RobotCar dataset (Sec. 4). Finally, we provide
more results on the Oxford and BiLiLo datasets (Sec. 5).

1. Proof: The Gram-Schmidt is equivariant

Proof : Let {v1, v2, . . . , vk} be a linearly independent set of
vectors in Rn.

Let define the rotated vectors v′i = Rvi, where R is an
orthogonal matrix.

The Gram-Schmidt process on {v1, v2, . . . , vk} gives:

u1 = v1,

u2 = v2 −
⟨v2, u1⟩
⟨u1, u1⟩

u1,

...

uk = vk −
k−1∑
i=1

⟨vk, ui⟩
⟨ui, ui⟩

ui,

(1)

The Gram-Schmidt process to the rotated vectors v′i = Rvi:

u′
1 = v′1 = Rv1 = Ru1, (2)
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For u′
2, we compute:
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Similarly, for u′
3, . . . , u

′
k, we have:

u′
i = Rui, (4)

Thus, the Gram-Schmidt process is rotation equivariant.

2. Dataset Details
We evaluate our proposed RALoc for LiDAR localization
on two large-scale outdoor benchmark datasets: Oxford
RobotCar dataset [1] and our collected BiLiLo dataset.

2.1. Oxford Radar RobotCar
The Oxford dataset is a geospatial dataset collected using
sensors mounted on an autonomous-capable Nissan LEAF
vehicle [4]. The dataset primarily features point cloud data
captured using dual Velodyne HDL-32E LiDAR sensors.
Notably, many studies [2, 3, 7–11], focus on utilizing the
point cloud data from only the left-side LiDAR sensor. This
dataset is widely used for research in localization [5], map-
ping, and autonomous navigation tasks.

We list the corresponding data split as shown in Tab. 1.

2.2. BiLiLo
The BiLiLo dataset is specifically designed to address the
current lack of datasets featuring significant rotations in Li-
DAR localization benchmarks. We report the training and
testing trajectories on BiLiLo, along with their lengths and
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Figure 1. Visualization dataset traversals. We are visualizing the trajectory shapes of each sequence on the remote sensing image, with
forward direction highlighted in red and the reverse direction shown in blue. The star shape is the starting point.

Sequence Length Tag Training Test
11-14-02-26 9.37km sunny ✓
14-12-05-52 9.22km overcast ✓
14-14-48-55 9.04km overcast ✓
18-15-20-12 9.04km overcast ✓

15-13-06-37 8.85km overcast ✓
17-13-26-39 9.02km sunny ✓
17-14-03-00 9.02km sunny ✓
18-14-14-42 9.04km overcast ✓

Table 1. Dataset details on the Oxford dataset.

Sequence Length Direction Training Test
11-28-11-20 9.54km Forward ✓
11-28-14-54 9.69km Forward ✓
11-28-15-26 9.76km Forward ✓
12-06-13-57 9.64km Forward ✓

12-06-10-30 9.76km Forward ✓
12-06-10-59 9.76km Forward ✓
03-04-16-04 9.04km Reverse ✓
03-04-16-29 9.08km Reverse ✓

Table 2. Dataset details on the BiLiLo dataset. The forward direc-
tion highlighted in red and the reverse direction shown in blue.

direction in Tab. 2. The relevant collection parameters,
along with an illustration of the sensor layout, are presented
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Figure 2. The BiLiLo platform. Coordinate frames show the
origin and direction of each sensor mounted on the vehicle with
the convention: x (red), y (green), z (blue). The dark red area is
the LiDAR, and the purple is the M39.

in Fig. 2.
We collect eight trajectories for training and testing. The

visualization of each trajectory on the remote sensing map
is shown in the Fig. 1.

Data Organization. The BiLiLo dataset is divide into
sequences, which include LiDAR point cloud and ground
truth poses from a single drive. Sequences are identified by
the time at which they are collected see Tab. 2 for details.

Timestamps. The name of each file corresponds to its
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Figure 3. Visualization comparison of datasets. a. Data acquisition equipment installation. b. Visualization of acquisition LiDAR point
cloud. c. Scanning comparison of same locations in forward and reverse directions.

KNN
VN
Conv

Mean
Pool

EKFA
VN
Conv

VN
Conv

VN
Conv

VN
Conv

Schmidt SO(3)
Rotation
Matrix

C×3×N C×3×k

Figure 4. The Pipline of point cloud canonicalization. The VN-Conv layer consists of a VN-Linear layer, a VN-BatchNorm layer, and a
VN-LeakyReLU activation function. The MeanPool operation applies average pooling along the last dimension.

timestamp, which is given as UNIX epoch times in mi-
croseconds. All sensor timestamps are synchronized to the
coordinated universal time (UTC) reported by the M39. The
Ouster LiDAR is synchronized using a standard hardwired
connection to the M39, which carries a pulse-per-second
(PPS) signal and NMEA messages. The data-recording
computer is synchronized to UTC time using an RS-232 se-
rial cable that carries a PPS signal and NMEA messages.

File Formats. LiDAR point cloud are stored in a bi-
nary format to minimize storage requirements. Each point
has four fields: [x,y,z,i] where (x,y,z) is the position of the
point with respect to LiDAR, i is the intensity of the re-
flected infrared signal. Each binary file is named according
to its corresponding timestamp.

Ground Truth. Ground truth poses are obtained
by post-processing GNSS, IMU and an RTK. Posi-
tions and velocities are given with respect to a fixed
East-North-Down frame ENDref . Each sensor frame’s
ground truth is stored with the following format:
[t, x, y, z, vx, vy, vz, r, p, y, ωz, ωy, ωx] where t is the epoch
timestamp in microseconds that matches the filename,
[x, y, z]T is the position of the sensor with respect to
ENDref , [vx, vy, vz]T is the velocity of the sensor with re-
spect to ENDref , (r, p, y) are the roll, pitch, and yaw angles,
which can be converted into a rotation matrix between the

sensor frame and ENDref . [ωx, ωy, ωz]
T are the angular ve-

locities of the sensor with respect to ENDref as measured in
the sensor frame.

3. Network Architecture
The detailed architecture of the proposed point cloud canon-
icalization is illustrated in Fig. 4.

4. Visualization
First, we compared our dataset with the MulRan dataset, as
shown in Fig. 3. (a) displays our data acquisition equip-
ment; in the MulRan dataset, there is a radar behind the
LiDAR that obstructs most of the rear field of view. (b)
We visualized the scanned point cloud from the MulRan
dataset, revealing a blank area at the rear of the scene point
cloud. (c) We overlaid the point clouds from the same lo-
cation in forward and reverse directions, distinguished by
red and blue colors respectively. It can be observed that
the regions visible in both directions at the same location in
our dataset (areas covered by both red and blue) are signifi-
cantly greater than those in the MulRan dataset.

We show more visualization results of RALoc on the Ox-
ford dataset in Fig. 5. The first row exhibits the test trajec-
tory without rotation, whereas the second row illustrates the
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Figure 5. The evaluation of RALoc on the Oxford dataset. We visualize the RALoc’s results on the Oxford dataset, in line with the main
paper, by conducting and visualizing the results under three different rotation scenarios: without rotation, small rotation, and large rotation.

Methods SO(3) Rotation Augmentation Without Augmentation
STCLoc NIDALoc HypLiLoc STCLoc NIDALoc HypLiLoc RALoc

15-13-06-37 36.56m, 23.38◦ 15.64m, 17.47◦ 23.07m, 19.43◦ 43.54m, 13.31◦ 42.24m, 9.85◦ 18.69m, 7.81◦ 3.17m, 4.08◦

17-13-26-39 38.80m, 21.88◦ 15.10m, 17.43◦ 24.34m, 19.87◦ 40.66m, 12.52◦ 41.89m, 9.57◦ 17.81m, 8.34◦ 3.87m, 3.96◦

17-14-03-00 38.09m, 21.62◦ 15.90m, 17.06◦ 23.96m, 19.49◦ 39.55m, 12.21◦ 37.49m, 9.20◦ 16.16m, 8.13◦ 3.32m, 3.83◦

18-14-14-42 32.53m, 20.74◦ 14.08m, 16.41◦ 19.50m, 19.58◦ 35.54m, 12.08◦ 37.15m, 9.54◦ 13.46m, 7.67◦ 2.58m, 3.70◦

Average 36.50m, 21.91◦ 15.18m, 17.09◦ 22.72m, 19.59◦ 39.82m, 12.53◦ 39.69m, 9.54◦ 16.53m, 7.99◦ 3.24m, 3.89◦

Table 3. Results on the Oxford dataset with small rotation. Mean position error (m) and mean orientation error (◦) for various methods
are reported, with best results in bold and second best results underlined.

Methods SO(3) Rotation Augmentation Without Augmentation
STCLoc NIDALoc HypLiLoc STCLoc NIDALoc HypLiLoc RALoc

15-13-06-37 29.97m, 24.31◦ 15.34m, 14.39◦ 28.22m, 29.28◦ 339.29m, 83.40◦ 321.16m, 78.81◦ 44.55m, 90.65◦ 3.19m, 4.07◦
17-13-26-39 32.22m, 25.10◦ 15.08m, 14.90◦ 28.12m, 29.50◦ 338.52m, 84.31◦ 322.29m, 76.83◦ 43.35m, 89.81◦ 3.87m, 3.96◦
17-14-03-00 32.33m, 25.56◦ 15.19m, 15.30◦ 27.41m, 29.75◦ 324.63m, 85.33◦ 314.47m, 75.21◦ 39.80m, 90.42◦ 3.33m, 3.88◦
18-14-14-42 26.39m, 26.48◦ 14.35m, 14.10◦ 22.94m, 29.72◦ 331.12m, 84.21◦ 316.01m, 78.25◦ 38.78m, 89.82◦ 2.58m, 3.73◦

Average 30.23m, 25.36◦ 14.99m, 14.67◦ 26.67m, 29.56◦ 333.39m, 84.31◦ 318.48m, 77.28◦ 41.62m, 90.18◦ 3.24m, 3.91◦

Table 4. Results on the Oxford dataset with large rotation. Mean position error (m) and mean orientation error (◦) for various methods
are reported, with best results in bold and second best results underlined.

trajectory under small rotational perturbations (less than 10
degrees around each of the Roll, Pitch, and Yaw, in accor-
dance with the settings described in the main paper). The
final row evaluates the performance during large rotations
(random rotations around the Yaw axis, as outlined in the
main paper). It is evident that the introduction of rotation

perception into RALoc results in negligible impact on po-
sitioning accuracy. Our model consistently maintains high
precision in localization despite varying degrees of rotation.



Methods
SO(3) Rotation Augmentation Without Augmentation

STCLoc NIDALoc HypLiLoc STCLoc NIDALoc HypLiLoc RALoc
15-13-06-37 38.02m, 22.78◦ 15.77m, 17.49◦ 32.28m, 32.14◦ 6.93m, 1.48◦ 5.45m, 1.40◦ 6.88m, 1.09◦ 3.19m, 4.10◦

17-13-26-39 40.36m, 20.98◦ 15.20m, 17.72◦ 31.93m, 32.98◦ 7.55m, 1.23◦ 7.63m, 1.56◦ 6.79m, 1.29◦ 3.87m, 3.96◦

17-14-03-00 39.92m, 20.16◦ 16.10m, 16.32◦ 30.57m, 31.01◦ 7.44m, 1.24◦ 6.68m, 1.26◦ 5.82m, 0.97◦ 3.32m, 3.87◦

18-14-14-42 33.88m, 19.50◦ 14.95m, 16.17◦ 25.70m, 32.91◦ 6.13m, 1.15◦ 4.80m, 1.18◦ 3.45m, 0.84◦ 2.59m, 3.71◦

Average 38.05m, 20.86◦ 15.51m, 16.93◦ 30.12m, 32.26◦ 7.01m, 1.28◦ 6.14m, 1.35◦ 5.74m, 1.05◦ 3.24m, 3.91◦

Table 5. Results on the Oxford dataset without rotation. Mean position error (m) and mean orientation error (◦) for various methods are
reported, with best results in bold and second best results underlined.

Methods SO(3) Rotation Augmentation Without Augmentation
STCLoc NIDALoc HypLiLoc STCLoc NIDALoc HypLiLoc RALoc

12-06-10-30 41.13m, 87.44◦ 18.56m, 94.95◦ 49.21m, 85.52◦ 9.27m, 2.47◦ 8.71m, 2.77◦ 4.01m, 1.51◦ 1.91m, 2.90◦

12-06-10-59 41.09m, 87.32◦ 18.70m, 94.81◦ 48.22m, 81.56◦ 8.88m, 2.51◦ 8.43m, 2.74◦ 3.45m, 1.36◦ 1.89m, 2.75◦

03-04-16-04 116.89m, 52.23◦ 75.47m, 111.09◦ 146.86m, 103.87◦ 426.08m, 87.14◦ 389.59m, 96.62◦ 439.12m, 96.87◦ 5.24m, 9.59◦
03-04-16-29 146.05m, 112.30◦ 103.44m, 113.78◦ 168.33m, 106.53◦ 440.37m, 88.79◦ 394.74m, 98.40◦ 355.45m, 104.06◦ 6.97m, 11.02◦

Average 86.29m, 84.82◦ 54.04m, 103.66◦ 103.16m, 94.37◦ 221.15m, 45.23◦ 200.37m, 50.13◦ 200.51m, 50.95◦ 4.00m, 6.57◦

Table 6. Results on the BiLiLo dataset. Mean position error (m) and mean orientation error (◦) for various methods are reported, with
best results in bold and second best results underlined.

5. Additional Validation
To conduct a more comprehensive evaluation, we also
tested several additional baselines [6, 9, 11] using the same
experimental setup as described in the main text. The test
results for the Oxford dataset under rotation conditions are
listed in Tab. 3 and Tab. 4. The results for the Oxford dataset
are presented in Tab. 5, while the results for the BiLiLo
dataset are shown in Tab. 6.
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