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1. Proof of Proposition 1

Proof 1 For simplicity, we approximate the fully connected
layer as a linear model, i.e., ŷi = wxi + b.

��ŷi � ŷj

�� = kw(xi � xj)k (12)

 kwk kxi � xjk (13)
 ✏ kwk (14)

(15)

In the above, the Inequality (13) follows from Hölder’s
inequality. For a given model with corresponding w,��ŷi � ŷj

��  O (✏) holds.

2. Proof of Proposition 2

Proof 2 Let xi and xj are two samples, and xi is ✏-covered
by xj . The cross-entropy loss of xi is given as

loss(xi) = L(wxi+ b) = �

KX

c=1

yic log(wxi+ b)c. (16)

Let ŷic = (wxi + b)c, then loss(xi) � loss(xj) can be
computed as

loss(xi)� loss(xj) = L(wxi + b)� L(wxj + b)
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yic(log(ŷic)� log(ŷjc))
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ŷic
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(17)
According to Definition 1, ŷik/ŷjk can be re-written as

follows,

ŷik
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
(w(xi + ✏) + b)k
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Substituting Eq. (18) into Eq. (17), the gap in losses can be
derived as follows.
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Similarly,
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Thus, according to Eq. (19) and Eq. (20), lim✏!0
ŷik

ŷjk
= 1,

and we have

lim
✏!0

loss(xi)� loss(xj) = 0. (21)

3. Proof of Lemma 1

Proof 3 Without loss of generality, the gradient of loss for
x w.r.t. the weight Wh of the h-th intermediate layer is
given as

gWh = (
@
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L(f✓(x), y))
T . (22)

According to the chain rule, the gradient of the i-th element
of the weight Wh can be written as
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where x̃h+1 is the output obtained from the h-th intermedi-
ate layer, i.e., x̃h+1 = WT

h x̃h + b, where x̃h can be under-
stood as the feature map from the intermediate layer. Then,
we have
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(24)
According to Definition 1, we have kx̃i,h � x̃j,hk  ✏. Let
�x = x̃i,h � x̃j,h, i.e., �x 2 RD and k�xk  ✏. Mean-
while, we can derive the following equation,

x̃i,h+1 = WT
h x̃i,h + b = x̃j,h+1 +WT

h �x (25)

According to Eq. (24) and Eq. (25), for xi, the gradient of
loss w.r.t. the weight Wh is given as

gxi
Wh

= (x̃j,h +�x)gTx̃+�x. (26)

We further use the first-order Taylor expansion to decom-
pose the gradient gx̃+�x

gx̃+�x = gx̃ +Hx̃�x+R2(�x), (27)

where R2(�x) denotes the terms no less than the second
order. Substituting Eq. (27) back to Eq. (26), the gradient
for parameter update is

gxi
Wh

= (x̃j,h +�x)(gx̃ +Hx̃�x+R2(�x))T (28)



In this way,
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4. Proof of Proposition 3

Proof 4 According to Eq. (29), we have
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Given a model f✓, since k�xk  ✏, the change of the gra-
dient can be formulated as follows,

lim
✏!0

k�gWhk = 0. (33)

5. Proof of Proposition 4

Proof 5 According to Lemma 2, 8x0
2 �D̂, we can find

a x 2 D such that x0 is ✏-covered by x. The gap in the
parameter changes between x0 and x can be estimated as
follows
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Based on Eq. (36), the significance of this gap can be esti-
mated by
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According to Propostion 3 and the definition of H✓̂, we can
derive that

lim
✏!0

k�Iup,paramsk  0. (40)

Finally, lim✏!0 k�Iup,paramsk = 0.

6. The General Workflow of Our Proposed

Method

To better understand the workflow of our proposed
method, we summarize the detailed algorithm in Algo-
rithm 1. The total epoch is 200, and no warm-up schedule
is used. The Adam optimizer is used with a weight decay
of 1e� 4 and an initial learning rate of 3e� 4.

Algorithm 1 The general workflow.

Require: a dataset D of images and label pairs (x, y), the
expected selection ratio sr, total epoch number T , clas-
sification model f , batch size B

Ensure: Importance scores IS for sample selection
1: for t = 0:T � 1 do

2: Calculate the distance matrix Dk for each class in
current feature space obtained by ft;

3: Calculate the degree of ✏-cover for each sample ac-
cording to Eq. (6);

4: Sample a mini-batch {xi,yi}
B
i=1 from D;

5: Determine the corresponding importance scores IS

for each sample xi using ✓at;
6: Calculate the reward signal r1 according to Eq. (5);
7: Calculate the reward signal r2 according to Eq. (7);
8: Calculate the general reward value r = r1 + r2;
9: Update ✓a and ✓c according to Eq. (8) and Eq. (9),

respectively;
10: Update model ft on the current mini-batch using

vanilla cross-entropy loss;
11: end for

7. Choice of A2C Network

Table 6. The A2C network architecture details.

index Layer Dimension

Actor
1 Linear (512, 512)
2 Linear (512, 256)
3 Linear (256, 1)

Critic
1 Linear (512, 512)
2 Linear (512, 256)
3 Linear (256, 1)

In Table 6, we provide the details of the A2C network.
Both the actor and critic in A2C consist of three linear lay-
ers. Therefore, forwarding and updating the A2C network
can be very efficient.

8. Complexity Analysis

According to the algorithm pipeline in Algorithm 1, the
main computational costs can be divided into three compo-
nents: 1) distance metric calculation, 2) degree of ✏-cover
calculation, and 3) the RL network forward passes and up-
dates. The complexities of the first two steps are O

�
N2

kd
�

and O
�
N2

k

�
, respectively, where Nk is the number of sam-

ples in class k and d is the feature dimension (e.g., 512 for
ResNet-18). Since a precise theoretical analysis of the com-
putational complexity of the A2C algorithm is challenging
due to its inherent nature, we provide some insights into
its computational cost. The structure of A2C algorithm is



Table 7. The reductions in training costs with ImageNet-1k se-
lected datasets compared to vanilla training. The reported results
are the average ± std across five independent runs.

Selection Ratio 60% 70% 80% 90% 100%
ResNet-50 -35.45±0.3 -26.15±0.3 -18.23±0.3 -10.16±0.3 -0

very simple (in Table 6): both the policy and critic networks
consist of only a few linear layers, making it more computa-
tionally efficient compared to previous methods. Thus, our
method can achieve competitive training efficiency com-
pared to other baselines in Figure 3. As a result, our pro-
posed method achieves a better trade-off between computa-
tional costs and performance, making it the best-performing
method with competitive computational costs.

9. Implementation Details

Our RL module follows the design and parameter settings
from [45], without introducing any additional hyperparam-
eters. For experiments on CIFAR-10 and CIFAR-100, fol-
lowing [72, 77, 88], we train ResNet-50 models for 200
epochs with a batch size of 256 and a 0.1 learning rate with
a cosine annealing learning rate decay strategy, an SGD op-
timizer with a momentum of 0.9, and weight decay of 5e-
4. Data augmentation of random crop and random hori-
zontal flip is added. For experiments on Tiny-ImageNet,
following [72], we adopt a batch size of 256, an SGD opti-
mizer with a momentum of 0.9, weight decay of 1e-4, and
an initial learning rate of 0.1. The learning rate is divided
by 10 after the 30th and the 60th epoch. The total num-
ber of epochs is 90. In each experiment, we perform three
independent random trials. For experiments on ImageNet-
1k, following [61, 72, 88], the VISSL library [14] is ex-
ploited. We adopt a base learning rate of 0.01, a batch size
of 256, an SGD optimizer with a momentum of 0.9, and a
weight decay of 1e-3. Because of the huge computational
cost, the experiment in each case is performed once. Note
that the methods Glister and CG-Score incur high compu-
tational and memory costs due to the iterative solving of
the bi-level optimization problem [28] and the calculation
of large Gram matrix inversions [49] for subset selection,
respectively. Thus, they are not compared on ImageNet-1k.

10. Data Selection Improves Training Effi-

ciency

Data selection substantially enhances the efficiency of
model training efficiency for subsequent tasks. Specifically,
once the selected datasets are obtained, only a subset needs
to be stored as a replacement for the full dataset, leading to
savings in memory costs. Moreover, the reduction in train-
ing data volume translates to diminished training costs. In
Table 7, we show the reductions in training deep models on

ImageNet-1k. It can be seen that the reductions in train-
ing costs are proportional to the number of selected data.
Meanwhile, it is important to note that with high data selec-
tion ratios, the generalization performance is nearly lossless
or even enhanced, as shown in Section 5. Therefore, the se-
lected datasets offer practical benefits.

11. Experiment Results on CIFAR-10

Due to space constraints, we present experiment results on
CIFAR-10. As shown in Table 8, our method can achieve
superior results. Notably, with relatively high selection ra-
tios (e.g., � 90%), our method exhibits performance sur-
passing that of the full dataset. Moreover, when the data
selection ratio is very low, e.g., 20% and 30%, our method
substantially improves over existing baselines. Therefore,
through extensive experiment results alongside those ob-
tained from other benchmark datasets as delineated in Sec-
tion 5, we demonstrate the promising efficacy of our pro-
posed method.

12. More Experimental Results on Vision

Transformer

To further demonstrate the superiority of our proposed
method, we employ Vision Transformer [10] to train with
selected datasets. Following [72], the implementation is
based on the public Github repository 1, where ViT small
is used. We systematically evaluate our approach across
different selection ratios using the CIFAR-10 dataset. Ex-
perimental results in Table 9 demonstrate the notable perfor-
mance gains achieved by our method with ViT compared to
other baselines.

13. Limitation and Future Work

First, the proposed method focuses on optimizing sample-
wise importance scores for selection. This may limit its ap-
plicability to extremely large-scale datasets, which is also a
primary challenge for all score-based data selection meth-
ods. Future work should emphasize extending existing data
selection approaches to such large-scale datasets. Second,
the proposed method drops samples that are more likely to
be ✏-covered by others. This is based on an important as-
sumption that the amount of noise in datasets is limited.
However, if the amount of noise is dominant, the useful-
ness of our method is not guaranteed, as noisy samples are
more likely to be outliers and less likely to be covered by
normal samples. Therefore, it is very necessary to develop
a variant that adapts to high-noise conditions with theoret-
ical guarantees in future work. Lastly, this paper evaluates
the performance of the proposed method on classification
tasks. Future work should, therefore, extend its application

1https://github.com/kentaroy47/vision-transformers-cifar10



Table 8. Test accuracy (%) on CIFAR-10 with ResNet-50.

Method / Selection ratio 20% 30% 40% 60% 70% 80% 90% 100%
Random 84.12±1.53 90.34±0.39 92.71±0.38 94.43±0.37 95.02±0.29 95.55±0.14 95.89±0.11 96.12±0.12

EL2N 70.32±0.74 87.48±0.80 89.23±0.61 94.43±0.27 95.17±0.27 95.55±0.18 96.01±0.20 96.12±0.12

MoSo 83.33±0.47 89.17±0.14 92.47±0.14 94.69±0.20 95.50±0.00 95.93±0.01 96.26±0.02 96.12±0.12

GraNd 79.23±0.84 87.88±0.90 92.17±0.73 94.14±0.47 95.19±0.12 95.35±0.38 95.96±0.05 96.12±0.12

Glister 79.23±0.55 87.88±0.49 92.17±0.34 95.03±0.13 95.61±0.05 95.98±0.17 96.34±0.02 96.12±0.12

Herding 78.42±0.78 87.77±0.66 89.40±0.54 89.12±0.35 92.11±0.13 93.92±0.36 95.50±0.13 96.12±0.12

CG-Score 80.50±1.23 89.35±0.87 92.73±0.37 95.19±0.23 95.87±0.17 95.99±0.16 96.16±0.15 96.12±0.12

Forgetting 67.58±1.05 88.12±1.40 93.61±0.87 95.17±0.25 95.85±0.20 95.46±0.27 95.85±0.37 96.12±0.12

Moderate-DS 81.75±0.38 90.94±0.27 92.79±0.31 94.69±0.24 95.26±0.30 95.73±0.19 96.17±0.15 96.12±0.12

Self-sup. prototypes 84.60±1.01 90.07±1.14 92.64±0.93 94.42±0.72 94.98±0.61 95.87±0.53 95.95±0.44 96.12±0.12

Ours 88.47±0.79 91.27±0.28 93.02±0.32 95.39±0.29 96.08±0.19 95.84±0.18 96.38±0.10 96.12±0.12

Table 9. The test accuracy (%) on CIFAR-10 with ViT-small. ResNet ! ViT.

Method/Selection Ratio 20% 30% 40% 60% 70% 80% 90% 100%
Random 67.98±0.29 71.99±0.12 74.69±0.26 78.98±0.28 80.30±0.36 81.33±0.10 82.63±0.18 84.00±0.32

EL2N 68.34±0.18 72.03±0.52 74.85±0.24 79.35±0.09 80.73±0.08 81.62±0.08 82.90±0.09 84.00±0.32

MoSo 67.15±0.19 71.80±0.18 74.88±0.19 79.45±0.11 80.27±0.23 81.82±0.15 82.92±0.34 84.00±0.32

GraNd 67.74±0.25 71.99±0.32 75.24±0.12 79.22±0.06 80.59±0.19 81.53±0.18 82.72±0.08 84.00±0.32

Glister 61.16±0.07 67.36±0.05 71.77±0.14 78.33±0.01 79.84±0.27 81.33±0.05 82.65±0.09 84.00±0.32

Herding 64.97±0.66 70.18±0.13 73.27±0.19 76.08±0.19 78.53±0.45 80.31±0.01 82.08±0.02 84.00±0.32

CG-Score 57.21±0.11 66.38±0.09 71.89±0.07 79.09±0.29 80.96±0.05 82.02±0.23 82.91±0.05 84.00±0.32

Forgetting 49.50±0.14 58.83±0.53 67.43±0.18 77.87±0.32 80.86±0.08 81.90±0.31 82.69±0.20 84.00±0.32

Moderate-DS 68.69±0.40 72.36±0.11 75.44±0.53 79.54±0.19 81.28±0.13 81.98±0.16 82.61±0.27 84.00±0.32

Self-sup. prototypes 67.97±0.17 72.08±0.32 75.38±0.05 79.24±0.16 80.34±0.21 81.66±0.25 82.86±0.19 84.00±0.32

Ours 69.21±0.21 73.28±0.21 75.48±0.11 80.52±0.21 81.73±0.19 82.15±0.26 82.96±0.06 84.00±0.32

to a broader range of tasks, such as fine-grained classifica-
tion, semantic segmentation, and object detection, and fur-
ther explore its application on multimodal data.


