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Supplementary Material

In this supplementary material, we provide additional explanations, experiments, and analyses to further support our findings.

A. Additional Explanations of SMP-Attack

A.1. Connection to Existing Feature-based Attacks
The proposed SMP-Attack method introduces a general attack framework that extends existing feature importance-based at-
tack approaches by incorporating semantics-aware multi-granularity patchout and multi-stage optimization. In the following,
we elaborate on the relationship between our SMP-Attack and other feature-based attack approaches.

Theorem 1. With specific patch settings P and selected layers L across total S training stages, the proposed SMP attack can
be reduced to FIA [55] and RPA [63] respectively.

Proof of Theorem 1. The optimal attack settings for FIA and RPA are assumed to be as follows: pm (modify probability),
M (ensemble number), k (selected layer), T (total iteration), and PFIA={0, · · ·, 0}, PRPA={d1, · · ·, dM} (patch setting).

On the one hand, we modify the stage-wise iteration and layer settings (i.e., LSMP = {ℓ(1), · · ·, ℓ(S)}, {T (1), · · ·, T (S)})
of multi-stage optimization in total S stages as: T (1) + · · · + T (S) = T , ℓ(1) = · · · = ℓ(S) = k. Thus, our multi-stage
training strategy becomes to single-stage training with respect to k-th layer of surrogate model. On the other hand, we
modify the stage-wise patch settings (i.e., {P(1)

SMP, · · ·,P
(M)
SMP}) of semantics-aware multi-granularity patchout in total S stages

as: d(s)1 = d1, · · ·, d(s)M = dM and c
(s)
1 = +∞, · · ·, c(s)M = +∞ for s = {1, · · ·, S}. According to patch definitions in Eqs. 4-5,

Dsc becomes to Ds as the hyperparameter c approaches to positive infinity. Thus, our multi-granularity patch becomes to
patch size-based single granularity.

Because of the identical patch settings, our SMP-Attack simplifies to RPA. By further setting d
(s)
1 = · · ·= d

(s)
M = 0 for

each s-th stage, the patch definition of our SMP-Attack reduces to a pixel-level representation (see Eq. 3), resulting in the
equivalence between the simplified SMP-Attack and FIA, which completes the proof. □

Thus it can be seen that our SMP-Attack represents a more generalized attack framework compared to existing feature-
based methods. Contrarily, FIA [55] and RPA [63] can be regarded as simplified versions of our SMP-Attack.

A.2. Properties of Multi-granularity Patchout
To overcome the limitations of single granularity, we refine the image patch generation process by incorporating color infor-
mation, introducing shape-based granularity alongside the existing patch size-based granularity.

Comparison of Single-granularity vs. Multi-granularity Patches. In Fig. 5, we compare the generated patches with
different settings. (a) By leveraging the color distance, SMP generates irregular patches with varying sizes, in contrast to
regular patches produced by RPA. (b) By fixing d and varying c, SMP generates irregular patches with consistent sizes but
varying shapes. (c) By varying d and c, SMP generates irregular patches with varying sizes and shapes. As depicted in the
4th row of Fig. 5, the segmentation of the “dog” object verifies that multi-granularity patch effectively preserves key semantic
features relevant to the object itself. By maintaining essential features (e.g., edges, textures, colors, etc.) while eliminating
non-essential ones, our multi-granularity method helps reduce overfitting and interference from model-specific features.

Efficient Implementation of Multi-granularity Patch Generation. Due to the conceptual similarity with superpixels [2,
23, 28, 58], we define Dsc in spatial space (Row and Column components: r, c) and LAB color space (L, A and B components:
l, a, b), i.e., dspatial(xij , c

n
p ) = (xij [r] − cnp [r])

2 + (xij [c] − cnp [c])
2 and dcolor(xij , c

n
p ) = (xij [l] − cnp [l])

2 + (xij [a] −
cnp [a])

2 + (xij [b] − cnp [b])
2. Multi-granularity patch can be efficiently generated with linear time complexity using simple

linear iterative clustering (SLIC) [2]. At each iteration, within a local (2d + 1) × (2d + 1) neighborhood, each pixel xij is
assigned to its nearest patch xn

p , and the patch center is updated as cnp = 1/|xn
p |
∑

xij∈xn
p
xij , where |xn

p | is the number
of pixels in the n-th patch. In practice, a few iterations (e.g., 4 ∼ 10) are sufficient for convergence. Our core innovation
lies in introducing multi-granularity into aggregated gradient computation. SLIC is employed as a tool within our SMP
framework to realize this idea, as it is designed to generate superpixels with local perceptual consistency under fixed d and c.
By adjusting parameters d and c, SLIC can produce superpixels of varying sizes and shapes, thereby suppressing irrelevant
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Figure 5. Comparison of the generated patches under different parameter settings. In contrast to RPA (1st row) that generates regular/non-
deformable patches with varying sizes (i.e., single-granularity), our proposed SMP method (4th row) generates irregular/deformable patches
with varying sizes and shapes (i.e., multi-granularity). For clarity, we visualize only a specific region of the clean input image, highlighted
by a red dashed box.

features during aggregation, particularly along non-object-related boundaries (see Fig. 5). This exploration of uncertainty
helps our SMP retain object-related features and improve gradient aggregation quality.

Exploration of Various Patch Settings. We compare the attack transferability under various patch settings in Fig. 6,
where the source models are Vgg-16 (left) and IncRes-v2 (right) respectively, with the target models indicated on the x-axis.
It is obvious that the multi-granularity (Me) attack demonstrates superior performance over single-granularity attacks (Ma,
Mb, Mc, Md).

By incorporating a semantics-aware multi-granularity mechanism, the proposed SMP-Attack enhances feature pattern
diversity and improves aggregate gradient quality, thereby achieving superior adversarial transferability over existing feature-
based attacks.

A.3. Properties of Multi-stage Optimization
To overcome the limitations of single-stage optimization, we refine the iterative perturbation training process by incorporating
multi-layer semantic information (particularly from shallow and intermediate DNN layers), and introducing a multi-stage
training strategy to replace the existing single-stage training strategy.

In the following experiments, adversarial examples are generated using the source models specified in the subfigure titles
and are evaluated against the target models listed along the x-axis.

Design and Configuration of Multi-Stage Training Strategies. Specifically, we divide the total number of iterations
T as (TS , TM , TD), where TS , TM , TD represent the iterations assigned to shallow/middle/deep layer based losses, and
the corresponding patch settings are denoted as PS , PM , PD. We select (Conv1 1, Conv3 3, Conv5 3) from Vgg-16
and (Conv2d 1a 3x3, Conv2d 4a 3x3, Conv2d 7b 1x1) from IncRes-v2 as shallow, middle, deep layers respectively to
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Figure 6. Comparison of the attack transferability under various patch settings. The attack model settings are defined as follows: Ma

(pixel-based single granularity employed by FIA, i.e., d = 0), Mb (regular patch size-based single granularity employed by RPA, i.e.,
varying d and setting c = +∞), Mc (irregular patch size-based single granularity employed by SMP, i.e., varying d and fixing c), Md

(irregular patch shape-based single granularity employed by SMP, i.e., fixing d and varying c), and Me (irregular patch size and shape-
based multi-granularity employed by SMP, i.e., varying d and c).
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Figure 7. Comparison of the attack transferability between conventional training strategies and our multi-stage training strategy. The attack
model settings are defined as follows: Ma (conventional joint optimization of the sum of shallow layer-based loss and intermediate layer-
based loss), Mb (alternative optimization between shallow layer-based loss and middle layer-based loss), Mc (multi-stage optimization
employed by SMP, (TS , TM , TD) = (1, 9, 0), PS={(1, 100), (2, 100), (3, 100)}, PM={(3, 50), (4, 40), (5, 30)}, PD = ∅), and Md

(multi-stage optimization with more diverse patch settings by SMP, (TS , TM , TD) = (1, 9, 0), PS={(1, 95), (2, 95), (3, 95), (1, 100),
(2, 100), (3, 100)}, PM={(3, 40), (4, 30), (5, 20), (3, 50), (4, 40), (5, 30)}, PD = ∅).

construct L. Patch settings are PS = {(1, 95), (2, 95), (3, 95), (1, 100), (2, 100), (3, 100)}, PM = PD = {(3, 40), (4, 30),
(5, 20), (3, 50), (4, 40), (5, 30)}. Here, we select the patch size parameter d from the set {1, 2, 3, 4, 5}, and adjust the patch
shape parameter c with slight variations around CSmooth ≈ 100 and CSharp ≈ 20.

Comparison of Different Training Strategies. Fig. 7 illustrates the effect of different training strategies on the attack
transferability. We observe that multi-stage training strategies (Mc, Md) outperforms conventional training strategies (Ma,
Mb), such as joint optimization and alternative optimization. Furthermore, we conduct the ablation study of different layer
settings in multi-stage optimization framework. As shown in Fig. 8, the proposed simple yet effective two-stage training
strategy (Ma) achieves the best ASR performance compared to other multi-stage training strategies (Mb, Mc, Md, Me,
Mf ). Compared to Ma, Mb exhibits a certain degree of performance degradation, as excessive reliance on shallow layer
information causes the update direction of adversarial examples to diverge greatly from the original optimization trajectory
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Figure 8. Comparison of the attack transferability under different attack settings within multi-stage optimization framework. The attack
model settings are defined as follows: Ma, (TS , TM , TD) = (1, 9, 0); Mb, (TS , TM , TD) = (2, 8, 0); Mc, (TS , TM , TD) = (1, 8, 1);
Md, (TS , TM , TD) = (0, 9, 1); Me, (TS , TM , TD) = (0, 8, 2); Mf , (TS , TM , TD) = (2, 6, 2).
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Figure 9. Comparison of attack transferability under different two-stage training configurations with extended training iterations.

guided by middle layer-based feature importance loss. On the other hand, overuse of deep layer information (e.g., Me and
Mf ) results in overfitting to the surrogate model.

Implementation Guidelines for Extended Training Iterations. Fig. 8 validate the effectiveness of our two-stage training
strategy with (Ts, Tm)=(1, 9). This suggests that moderate use of shallow layers (e.g., 10%–50%) is optimal, while overuse
should be avoided. Building upon this, we further investigate the effectiveness of our two-stage training strategy under a
more practical setting with extended training iterations. For larger iterations (e.g., T =20 or 30), we compare configurations
(Ts, Tm) = (5, 15) and (5, 25) with their counterparts (15, 5) and (25, 5). As shown in Fig. 9, using fewer shallow-layer
iterations (Ts=5) consistently outperforms excessive ones (Ts=15 or 25).

By optimizing multiple layer-based loss across different stages, the proposed SMP-Attack systematically explores both
generic essential features from shallow layers and model-agnostic significant features from intermediate layers, thereby
achieving enhanced transferability.

B. Additional Experiments of SMP-Attack

B.1. Comparison of the Transferability of Different Attack Methods using Additional Surrogate Models
In this section, we quantitatively compare our SMP methods with other feature-based attack methods using additional surro-
gate CNN models, including Res50-v1 [20], Vgg-19 [41], Inc-v3 [6].

For the experimental results given in Sec. 4 and the Appendix, the selected layers of each surrogate model are presented
in Table 3. Firstly, the middle layer setting is completely consistent with previous methods. Secondly, the shallow layer is
generally set to the first DNN layer. Exceptionally, in ResNet models, the shallow layer setting is set to the last layer of 1st
block to aligns with its intermediate layer setting due to the residual connection structure. It is important to emphasize that
our SMP attack follows the layer setting of previous studies and consistently select first DNN layer to incorporate generic
feature patterns. Our method achieves better attack performance without any fine-tuning for individual surrogate models,
thus avoiding significant parameter tuning costs. Additionally, in Sec. A.1 of this Appendix, our SMP method is theoretically



Surrogate Model Shallow Layer Middle Layer
Vgg-16 Conv1 1 Conv3 3
Vgg-19 Conv1 1 Conv3 4
Inc-v3 Conv2d 1a 3x3 Mixed 5b

IncRes-v2 Conv2d 1a 3x3 Conv2d 4a 3x3
Res50-v1 The last layer of 1st block The last layer of 2nd block

Res152-v1 The last layer of 1st block The last layer of 2nd block

Table 3. The layer configurations for our multi-stage optimization applied to each surrogate model.

Attack Vgg-16 Inc-v3 Inc-v4 IncRes-v2 Res50-v1 Res152-v1 Inc-v3adv IncRes-v2adv Inc-v3ens3 IncRes-v2ens Inc-v3ens4 Avgbb
FIA 90.4 87.2 82.4 78.4 99.8 96.7 77.9 69.3 70.6 56.7 71.0 80.0
RPA 94.1 91.5 88.0 87.9 99.9 98.0 83.3 77.5 77.9 66.1 75.0 85.4
NAA 76.2 77.4 75.9 70.1 92.4 73.4 36.4 39.5 31.6 19.5 32.1 56.8
DANAA 69.1 72.9 69.9 64.3 91.4 70.0 35.0 37.5 31.3 19.0 31.0 53.8
NEAA 67.7 70.4 66.6 61.2 90.1 67.6 33.0 35.8 29.0 17.6 29.1 51.6
BFA 81.7 75.3 68.8 67.8 99.5 88.0 62.6 55.5 58.9 45.4 58.5 66.3
MFAA 94.2 89.5 85.4 83.5 100.0 97.8 78.9 69.6 72.2 56.4 68.8 81.5
SMP(Ours) 95.6 93.0 90.7 90.1 99.9 98.2 86.3 81.3 81.0 71.1 81.1 88.0
PIDI-FIA 96.5 91.8 88.1 87.2 99.7 97.8 88.1 81.9 82.7 68.9 80.1 87.5
PIDI-RPA 97.4 94.9 93.5 92.1 99.8 98.8 90.4 86.8 87.8 78.7 85.4 91.4
PIDI-NAA 89.5 89.7 85.9 84.6 96.4 88.9 51.0 57.1 45.4 28.6 45.8 69.4
PIDI-DANAA 87.6 89.3 86.6 84.5 97.0 90.4 53.9 59.9 50.1 33.6 47.6 71.0
PIDI-NEAA 86.5 87.4 84.1 82.3 96.5 88.5 50.2 55.4 45.3 29.7 45.0 68.3
PIDI-BFA 83.2 78.4 69.9 68.4 99.7 89.1 64.3 57.1 59.8 46.6 59.7 67.7
PIDI-MFAA 98.4 95.4 93.5 92.8 99.8 98.6 89.4 86.3 85.8 73.5 82.5 90.5

Res50-v1

PIDI-SMP(Ours) 98.4 96.1 94.8 94.8 99.8 98.9 93.5 91.6 92.2 85.4 90.8 94.2
FIA 99.4 94.9 95.7 91.8 95.7 93.4 93.1 87.4 91.0 83.1 89.7 92.3
RPA 99.8 96.3 96.2 94.6 97.3 96.2 92.4 87.4 89.7 83.4 89.6 93.0
NAA 96.2 91.0 91.2 87.9 88.4 82.6 62.9 65.2 64.0 43.1 62.7 75.9
DANAA 94.2 89.5 88.6 85.1 86.3 80.1 61.4 63.3 59.4 42.6 59.0 73.6
NEAA 93.2 88.0 87.6 83.9 85.0 78.2 59.8 60.6 56.9 40.5 57.9 72.0
BFA 99.2 91.9 91.1 86.5 92.5 90.2 87.8 81.4 85.6 76.3 83.5 87.8
MFAA 99.8 97.5 97.6 95.6 97.6 96.8 95.9 91.8 94.0 89.2 93.9 95.4
SMP(Ours) 100.0 97.5 97.2 95.5 98.7 97.2 95.4 92.9 94.5 89.7 94.3 95.7
PIDI-FIA 99.8 96.4 96.5 93.7 97.1 95.6 92.9 88.8 89.8 85.2 91.0 93.3
PIDI-RPA 99.7 97.9 97.1 95.9 98.2 96.8 94.6 90.3 91.7 86.5 92.4 94.6
PIDI-NAA 97.4 94.0 94.1 90.1 92.6 88.1 68.6 70.2 65.9 48.0 64.2 79.4
PIDI-DANAA 96.8 94.1 92.3 88.8 91.5 87.9 68.2 69.0 65.9 48.2 63.5 78.7
PIDI-NEAA 96.3 92.6 91.0 88.2 91.0 86.2 66.1 68.7 65.0 46.4 63.8 77.8
PIDI-BFA 99.7 92.4 91.4 87.1 92.8 90.9 88.2 81.8 86.9 77.6 85.4 88.6
PIDI-MFAA 100.0 99.0 98.5 96.8 98.5 98.3 96.5 93.8 94.2 91.2 95.4 96.6

Vgg-19

PIDI-SMP(Ours) 100.0 97.4 97.5 95.9 98.6 97.1 96.1 92.3 93.7 90.2 95.0 95.8
FIA 71.9 98.3 83.5 79.3 69.6 64.2 54.7 55.2 43.5 23.4 41.3 62.3
RPA 75.3 98.6 85.7 84.0 72.7 68.4 59.0 59.5 45.5 26.3 44.1 65.4
NAA 73.8 97.0 84.3 82.2 74.2 68.3 60.6 62.5 50.1 31.7 50.5 66.8
DANAA 75.4 97.8 87.3 84.6 77.2 72.1 65.2 68.3 55.4 33.5 55.1 70.2
NEAA 79.8 99.1 89.4 86.7 79.9 74.5 65.0 65.0 52.3 31.7 52.8 70.6
BFA 79.2 99.9 95.8 91.7 76.8 74.4 65.7 62.5 50.8 39.2 44.7 71.0
MFAA 81.9 97.6 86.5 84.6 78.6 72.8 65.2 64.9 51.9 32.5 44.9 69.2
SMP(Ours) 82.3 99.7 92.9 90.7 83.6 75.1 62.9 66.2 50.4 28.4 49.4 71.1
PIDI-FIA 81.4 98.5 87.9 85.0 78.9 74.9 60.0 61.9 46.3 26.8 49.8 68.3
PIDI-RPA 83.7 98.5 89.6 88.7 83.0 79.8 64.8 65.6 49.6 29.4 53.8 71.5
PIDI-NAA 82.1 97.2 87.2 86.3 81.2 79.0 65.7 66.9 54.3 33.5 54.3 71.6
PIDI-DANAA 85.5 97.9 89.5 89.2 83.6 81.9 71.1 72.5 62.4 37.9 61.5 75.7
PIDI-NEAA 88.2 99.0 92.7 91.5 88.4 85.1 71.3 71.9 55.7 35.3 58.0 76.1
PIDI-BFA 81.3 100.0 97.0 93.9 78.4 76.1 70.8 65.3 53.4 44.3 50.8 71.1
PIDI-MFAA 87.1 98.0 89.9 89.0 87.2 83.8 68.0 70.5 56.2 34.0 51.2 74.1

Inc-v3

PIDI-SMP(Ours) 89.1 99.0 92.4 92.7 89.3 85.2 68.1 69.6 54.5 35.0 59.3 75.8

Table 4. The attack success rate (%) of various transfer-based attacks against six CNN models and five defended CNN models. The average
ASR of all black-box models are reported. The best results are highlighted in bold red.

proven to be a generalized feature-based attack approach, explaining its superior performance over other attack methods.
Even though the attack performance could be further enhanced through layer-specific fine-tuning for each model, this is not
the primary focus of our work. Instead, we aim to introduce a general multi-stage optimization framework to effectively learn
multi-layer features.

As a supplement to the main experiments in Sec. 4, the proposed SMP attack are further compared with state-of-the-art
feature-based attacks using additional surrogate DNN models. Table 4 presents the black-box ASR results on six undefended
CNN models, including Vgg-16 [41], Inc-v3 [6], Inc-v4 [7], IncRes-v2 [7], Res50-v1 [20], and Res152-v1 [20], and five
defended CNN models, including Inc-v3adv and IncRes-v2adv [26], Inc-v3ens3, Inc-v3ens4 and IncRes-v2ens [45]. Table 5
presents the black-box ASR results on eight undefended ViT models, including PiT-S [21], CaiT-S [44], DeiT-B [43], Swin-
B[31], ViT-B [56], Visformer-S [5], Convit-B[12], and Twins-PCPVT-B [8], and three defended ViT models, including
Deit-Sadv [3], Swin-Badv [36], and XCit-S12adv [9]. As shown in Tables 4-5, our SMP-Attack achieves the highest average
ASR (highlighted in bold red) on all black-box settings.



Attack PiT-S CaiT-S DeiT-B Swin-B ViT-B/16 Visformer-S Convit-Base Twins-PCPVT-B Deit-Sadv Swin-Badv xcit Sadv Avgbb
FIA 56.2 48.1 39.0 46.4 37.1 63.7 41.3 52.0 23.8 15.8 30.0 41.2
RPA 65.1 60.4 48.5 56.5 45.1 71.9 51.2 64.8 25.4 17.5 30.5 48.8
NAA 50.0 35.2 35.8 48.8 27.2 60.2 35.6 54.6 15.7 10.3 16.1 35.4
DANAA 46.4 32.4 34.8 45.7 25.3 55.8 32.6 51.4 15.3 9.9 14.9 33.1
NEAA 43.0 30.1 33.9 41.6 24.2 53.2 30.5 48.4 15.4 9.7 14.7 31.3
BFA 50.9 41.5 38.9 44.6 30.0 50.5 40.1 47.6 22.4 14.5 26.9 37.1
MFAA 58.0 50.3 42.3 49.0 39.7 64.1 43.5 56.2 24.2 16.2 30.3 43.1
SMP(Ours) 71.4 65.7 56.5 62.8 48.5 77.9 54.9 70.6 24.4 16.9 28.6 52.6
PIDI-FIA 68.6 61.4 53.1 57.8 52.5 74.6 52.0 67.0 33.5 25.8 37.0 53.0
PIDI-RPA 78.2 73.0 64.5 69.3 59.6 82.5 65.5 76.3 35.3 27.8 37.4 60.9
PIDI-NAA 70.2 57.7 58.7 66.6 46.2 77.0 57.7 72.3 25.0 18.1 24.7 52.2
PIDI-DANAA 73.5 59.8 60.0 70.3 50.3 77.4 59.4 75.3 24.8 18.7 23.4 53.9
PIDI-NEAA 69.9 56.3 58.7 66.3 44.5 74.7 56.0 72.0 24.6 18.4 24.6 51.5
PIDI-BFA 71.2 58.4 57.9 65.2 50.5 77.1 57.6 72.4 32.8 27.1 30.5 54.6
PIDI-MFAA 74.8 66.5 58.4 62.3 58.0 80.0 58.9 73.7 33.7 26.2 36.6 57.2

Res50-v1

PIDI-SMP(Ours) 85.1 82.5 74.3 78.2 70.4 89.0 74.5 84.0 38.7 32.5 42.0 68.3
FIA 74.3 69.8 55.7 65.2 60.8 82.4 56.3 71.1 34.8 24.4 36.3 57.4
RPA 78.9 76.0 65.7 71.8 62.3 83.5 64.0 72.7 36.4 25.6 37.1 61.3
NAA 70.4 58.1 53.9 65.9 49.1 77.4 52.4 70.6 25.9 16.9 23.5 51.3
DANAA 65.8 55.1 51.8 62.3 45.3 73.1 50.6 67.5 24.2 16.2 23.9 48.7
NEAA 64.7 53.8 51.0 60.9 44.6 71.4 49.0 65.1 24.0 15.2 22.8 47.5
BFA 71.1 67.4 57.2 63.6 54.7 77.2 55.1 68.4 31.3 21.1 31.0 54.4
MFAA 80.4 79.0 65.6 73.1 67.9 87.4 63.2 78.7 35.7 26.6 37.5 63.2
SMP(Ours) 85.4 83.8 74.3 81.7 74.2 89.8 71.7 85.2 37.5 25.8 37.9 67.9
PIDI-FIA 76.6 74.1 62.4 66.5 65.0 84.2 61.5 74.0 40.6 30.2 40.4 61.4
PIDI-RPA 79.6 75.8 67.8 70.3 62.2 83.1 65.6 73.2 43.5 31.2 42.3 63.1
PIDI-NAA 79.1 68.3 66.2 71.6 58.3 81.3 63.4 76.0 33.9 22.3 29.0 59.0
PIDI-DANAA 76.5 68.4 64.8 72.0 57.7 80.0 62.3 74.8 32.3 21.8 28.4 58.1
PIDI-NEAA 76.0 67.2 63.3 70.3 54.8 77.6 62.2 74.3 32.1 21.0 28.3 57.0
PIDI-BFA 79.4 73.7 68.5 70.1 66.7 83.4 63.7 77.1 39.2 28.5 36.5 62.3
PIDI-MFAA 84.9 82.5 71.5 74.4 72.3 89.7 68.6 80.3 42.6 31.7 41.0 67.2

Vgg-19

PIDI-SMP(Ours) 86.0 84.0 73.0 80.5 74.8 90.5 72.6 85.2 46.6 33.0 42.8 69.9
FIA 46.6 37.0 32.0 28.2 26.7 46.4 29.0 42.4 20.7 13.4 21.9 31.3
RPA 50.9 41.4 36.0 32.4 30.6 54.3 36.1 50.5 20.0 13.9 20.9 35.2
NAA 52.4 44.1 38.9 50.3 32.5 55.6 39.5 53.2 20.5 14.3 20.2 38.3
DANAA 52.2 46.5 40.2 52.8 33.1 58.0 41.5 56.8 19.8 14.2 20.6 39.6
NEAA 54.5 45.5 39.7 51.9 33.4 58.2 42.2 55.9 21.7 14.9 21.8 40.0
BFA 54.6 44.7 38.2 50.4 33.7 59.1 40.6 55.5 22.3 15.0 22.1 39.7
MFAA 54.1 44.3 38.5 49.3 35.5 58.7 40.3 55.0 24.2 15.9 23.8 40.0
SMP(Ours) 58.5 43.9 40.4 53.5 32.2 62.6 39.9 57.8 19.2 12.9 21.1 40.2
PIDI-FIA 57.8 48.5 44.1 36.3 35.5 55.8 38.0 50.2 29.3 18.0 30.3 40.3
PIDI-RPA 62.4 51.1 47.5 40.2 42.7 64.2 46.7 60.8 30.0 21.2 31.1 45.3
PIDI-NAA 52.4 44.1 38.9 50.3 42.9 63.9 50.6 62.2 29.8 19.9 27.9 43.9
PIDI-DANAA 62.8 56.1 55.1 58.2 47.1 68.6 53.7 66.4 30.9 20.8 27.8 49.8
PIDI-NEAA 63.0 57.2 51.2 58.4 47.2 69.8 53.2 66.6 32.3 22.2 30.7 50.2
PIDI-BFA 62.1 57.3 49.7 50.4 49.5 53.5 49.2 60.6 31.3 19.1 27.6 46.4
PIDI-MFAA 66.8 57.4 51.2 58.7 46.0 69.7 50.2 65.3 30.7 20.7 30.5 49.7

Inc-v3

PIDI-SMP(Ours) 66.3 57.6 54.6 60.9 45.1 69.9 51.6 66.3 32.8 21.8 32.0 50.8

Table 5. The attack success rate (%) of various transfer-based attacks against eight ViT models and three defended ViT models. The
average ASR of all black-box models are reported. The best results are highlighted in bold red.

B.2. Additional Evaluations on the Compatibility of Multi-stage Training Strategy
In this section, we evaluate the compatibility of our multi-stage training strategy when integrated with other feature-based
attacks. Fig. 10 compare the performance of existing feature-based attacks before and after integration with our multi-stage
optimization (MSO). Consistent with our SMP’s attack settings, existing feature-based attacks update AEs using the shallow
layer for one iteration, followed by nine iterations with the intermediate layer.

Compared to their respective counterparts (i.e., FIA, RPA, NAA, NEAA), FIA-MSO, RPA-MSO, NAA-MSO, and NEAA-
MSO, which generate AEs by our MSO framework, improve the attack performance by a large margin across various
CNN/ViT models, thereby validating the compatibility of our multi-stage optimization framework in diverse attack settings.

B.3. Comparison of the Efficiency of Different Attack Methods
In this section, we assess the attack efficiency on the ImageNet dataset, using the average number of iterations t required for
the DNN model’s first misclassification and the average runtime per image as the evaluation metrics.

We calculate the metric t̂ over all the testing images, i.e., t̂ = (1/N)
∑N

i=1 ti, where N is the total number of images and
ti represents the number of iterations required for i-th image. Table 6 shows the attack efficiency of different methods across
various undefended/defended CNN models. Because of the multi-stage training mechanism, our SMP method achieves
the highest attack efficiency in all the black-box settings. Furthermore, Compared to MFAA, which integrates deep and
intermediate layers, the proposed SMP demonstrates better attack efficiency by leveraging shallow and intermediate layers.

In addition, we evaluate the average runtime per image (in seconds). As shown in Table 7, SMP achieves faster runtime
than RPA under the single-stage setting, benefiting from its efficient C++ implementation. Under the multi-stage setting, SMP
maintains competitive efficiency, as the stage-wise training design does not introduce significant computational overhead.
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Figure 10. The impact of combining multi-stage optimization (MSO) with other feature-based attacks on black-box ASR against undefend
CNNs (left), defended CNNs (middle), and ViT (right) target models. The source models are indicated in the sub-figure titles, while the
target models are shown on the x-axis. The dashed line represents the original feature-based attack, while the solid line represents the
combination method that generates AEs in our MSO framework.

Attack Vgg-16 Inc-v3 Inc-v4 IncRes-v2 Res50-v1 Inc-v3adv IncRes-v2adv Inc-v3ens3 IncRes-v2ens
FIA 5.57 5.97 6.65 6.99 4.15 6.51 7.43 6.88 8.05
RPA 4.81 5.15 5.76 6.06 3.50 5.88 6.69 6.30 7.34
NAA 6.52 6.17 6.40 7.19 5.64 8.72 8.62 8.84 9.71
DANAA 8.04 7.67 8.01 8.76 7.13 9.57 9.62 9.68 10.25
NEAA 6.37 6.14 6.37 7.09 5.69 8.55 8.51 8.62 9.56
MFAA 4.79 5.11 5.72 6.06 3.32 6.03 6.78 6.35 7.52
SMP 4.74 5.07 5.58 5.93 3.30 5.82 6.54 6.16 7.29

Table 6. Comparison of attack efficiency of different feature-based methods. The source model is Res152-v1, and the target models are
indicated in the 1st row. The best results are highlighted in bold red, where lower values represent better efficiency.

Attack FIA RPA NAA NEAA SMP
Without Multi-Stage Optimization 2.74 6.11 2.31 17.82 5.15

With Multi-Stage Optimization 4.97 10.89 5.46 40.64 11.25

Table 7. Comparison of the average runtime across different feature-based methods under single-stage and multi-stage training strategies.

B.4. Additional Comparison of Iterative Attack Process of Different Attack Methods
Fig. 11 illustrates the iterative attack process of different feature-based methods. Adversarial examples xadv generated by
the source model (IncRes-v2 [7], Res50-v1 [20]) are used to attack the target model (Vgg-16 [41]). In the first ten columns,
each row shows the attention transition in the class activation map [40] for each attack method during the training iterations
(t = 1, · · ·, 10), along with predicted labels and confidence levels. Additionally, in the last three columns, we presents
perturbations δ, adversarial examples xadv , and aggregate gradients ∆̃ for each attack.

As shown in the last column of Fig. 11 (a), the proposed SMP produces more accurate aggregated gradients than other
state-of-the-art methods, benefiting from the superiority of multi-granularity over single-granularity. Compared to other
attacks, which gradually disrupts DNN prediction with multiple iterations, our SMP enables a rapid label change from
1st to 2nd iterations, i.e., “Cricket”⇒“Ant”. As can be seen, SMP utilizes the multi-stage training strategy to effectively
refine the optimization trajectory for updating AEs from the early stage, i.e., t = 2. Building on this, SMP continues to
search the adversarial information along this refined optimization trajectory, ultimately resulting in the erroneous prediction
“Cucumber” with a higher confidence 29.4%. Thus, the proposed SMP method demonstrates more effective and efficient
attacks. Similar results can also be observed in Fig. 11 (b).
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Figure 11. Comparison of iterative attack process of different feature-based methods (Source: IncRes-v2/Res50-v1, Target: Vgg-16). Each
row illustrates the transition of class activation maps, adversarial perturbation, adversarial example, and aggregate gradient.
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