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Supplementary Material

We include the following sections in the supplemental
materials:
• Further detail of limb penetration loss.
• Further detail of the evaluation metrics.
• Real-world applications: retargeting motion from real hu-

mans.
• User study.
• Ablation study on joint orientation loss.
• Ablation study on global motion prediction.
• Single-pass motion retargeting and separate motion retar-

geting.
• Ablation study on Dense Shape Representation.
• Efficiency of limb penetration constraint module.
• Demo videos.

A. Further Detail of Limb Penetration Loss
Figure 7 illustrates penetration detection using Signed Dis-
tance Fields (SDF) in motion retargeting. The large sphere
represents the body surface, while the curved trajectory rep-
resents the motion path of a limb or body part. Along
this trajectory, multiple vertices exist, some penetrating the
body (inside the sphere) and others remaining outside. The
penetration loss computation involves finding the nearest
reference vertex on the body surface for each motion path
vertex, computing the vector from the query vertex to its
reference vertex, and multiplying this vector by the nor-
mal vector of the reference vertex to estimate penetration
depth. The black and red arrows represent surface normals,
which guide penetration correction. Blue arrows indicate
vectors from penetrating vertices to their nearest reference
points, while cyan arrows represent similar vectors for non-
penetrating vertices. This visualization highlights how full-
body geometric correction is applied across the motion tra-
jectory, ensuring that motion retargeting maintains geomet-
ric plausibility by preventing unnatural interpenetration.

B. Evaluation Metrics
We evaluate the retargeted motion primarily from three per-
spectives: semantics, geometry, and motion smoothness.
These are measured using MSE, penetration rate, and cur-
vature, respectively.
Mean Squared Error. The Mean Squared Error (MSE)
evaluates semantic preservation by assessing how closely
the retargeted skeleton joints X̂, align with the ground truth
joints, Xgt. Although the ground truth suffers severe pene-
tration, we investigate the motion sequences, and they can

Figure 7. The detail of limb penetration loss computation for pen-
etrated vertices and non-penetrating vertices.

still work as an auxiliary evaluation of how semantics is
maintained. The squared error is normalized by the charac-
ter’s height h. The metric is formulated as:

MSE =
1

h
kXgt � X̂k22. (8)

Penetration Rate. The penetration rate is calculated as the
ratio of interpenetrating points to the total number of limb
vertices. Unlike [20], our approach considers all limbs:

Pen Rate =
Number of penetrated limb vertices

Number of all limb vertices
⇥100%.

(9)
Curvature. To address the discontinuity in the retargeted
motion path, we compute the curvature of the motion path
for each joint based on acceleration. Let r represent the
motion vector, the curvature is defined as:

Curv =
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dt2
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. (10)

C. Real-world Applications
Figure 8 presents the motion retargeting results of our STaR
on real-human motion data from the ScanRet dataset [18].
The left column shows real-human motions with texture



maps removed for anonymity, while the right columns dis-
play the retargeted motions on diverse target characters.
STaR effectively preserves motion semantics, transferring
poses and movement dynamics while adapting to differ-
ent body shapes, including a wrestler, a stylized boy, and
a cartoon-like figure. Despite variations in skeletal struc-
tures, STaR maintains spatial and temporal coherence, en-
suring natural adaptation without excessive limb stretching
or severe interpenetration. The results demonstrate STaR’s
ability to generalize human motion to stylized characters
while preserving geometric plausibility and temporal con-
sistency.

Figure 8. Motion retargeting from real human actors.

D. User Study
We conducted a user study to compare the retargeted motion
sequences of STaR with three methods: SAN [1], R2ET
[20], and MeshRet [18]. Participants were presented with
10 randomly selected motion sequences, each containing
the source motion and retargeted results from all four meth-
ods, shown in a randomized order to prevent bias.

Participants were asked to evaluate the results based on
four key aspects:
1. Which one better preserves the semantics of the original

motion?
2. Which one is physically more reasonable (fewer pene-

trations and distortions)?
3. Which movement appears smoother and more natural?
4. Which one do you prefer overall?

To ensure a diverse set of responses, we distributed ques-
tionnaires and collected feedback from 21 participants. The
results, presented in Tab. 3, show that STaR significantly
outperforms all baseline methods across all criteria. No-
tably, 77.14% of participants favored STaR in terms of mo-
tion semantics preservation, and 76.19% preferred our re-
sults overall. Our model also received 70.48% approval
for motion coherence, demonstrating its ability to produce
smooth and temporally stable motion trajectories, while

achieving 73.33% in geometric correctness, highlighting
its effectiveness in preventing interpenetration and ensuring
spatial plausibility.

Compared to other methods, SAN [1] and R2ET [20]
struggle with geometric plausibility, while MeshRet [18]
fails on characters with diverse body shapes, leading to ex-
cessive penetration issues. In contrast, STaR consistently
maintains a balance between motion semantics, geometric
correctness, and temporal consistency, making it the pre-
ferred choice for high-quality motion retargeting.

E. Ablation Study on Joint Orientation Loss
Figure 9 illustrates an ablation study on the joint orienta-
tion loss, comparing results without the loss (left) and with
the loss (right). In the absence of this constraint, our STaR
model, which operates in a large search space, occasion-
ally produces unnatural poses, such as flipped arms or mis-
aligned limb orientations. These artifacts arise due to the
increased flexibility of the model, which, without explicit
regularization, may lead to implausible joint rotations.

By incorporating the joint orientation loss, as shown on
the right, the model effectively regulates joint rotations, en-
suring physically plausible limb orientations while preserv-
ing motion semantics. This demonstrates the importance
of enforcing orientation constraints to prevent extreme limb
deviations and enhance the stability of motion retargeting.

Figure 9. Ablation study on joint orientation loss. Without this
loss (left), STaR’s large search space may lead to unnatural poses,
such as flipped arms. Adding the loss (right) ensures physically
plausible joint orientations.



Table 3. Human evaluation results between our STaR and baseline methods.

Criteria SAN[1] R2ET [20] MeshRet[18] STaR (Ours)

Semantics Preservation 11.43% 8.57% 2.86% 77.14%
Geometry Correctness 12.38% 9.52% 4.76% 73.33%
Motion Smoothness 20.00% 4.76% 4.76% 70.48%
Overall Quality 12.38% 8.57% 2.86% 76.19%

F. Ablation Study on Global Motion Prediction

After examining the relationship between global motion and
character height in the Mixamo dataset [2], we observed
no statistically significant correlation. After introducing a
compact decoder to enhance global motion prediction, we
observed rapid overfitting to the training set, resulting in
poor generalization. As shown in Tab. 4, its performance
does not exceed the baseline, which simply normalizes and
denormalizes global motion relative to character height.

Table 4. Ablation study on global motion prediction. Since the
global motion prediction module will only affect the MSE metric,
the other three metrics are omitted for clarity. Please note that this
study evaluates a preliminary variant—not our final model config-
uration.

Methods MSE # MSElc # Pen% # Curv
�

Global Motion Prediction
Baseline 1.7770 - - -
Global Motion Decoder 1.8708 - - -

G. Single-pass Motion Retargeting and Sepa-
rate Motion Retargeting

As presented in Tab. 5, our well-designed spatio-temporal
model supports motion retargeting of varying sequence
lengths within a single forward pass. The results show
no significant difference between separate retargeting and
single-pass retargeting.

Table 5. The results of single-pass motion retargeting and separate
motion retargeting

Methods MSE # MSElc # Pen% # Curv

�

Separated Inference V.S. Inference Once
Model 1 Separate Inference 0.0369 0.0175 7.99 10.61
Model 1 Inference Once 0.0368 0.0174 7.99 10.66

Model 2 Separate Inference 0.0355 0.0162 8.41 8.69
Model 2 Inference Once 0.0355 0.0162 8.41 8.66

H. Ablation study on Dense Shape Representa-
tion

For shape representation, we exclude skeleton data and
skeleton-based shape information due to their limited util-
ity and potential drawbacks. The skeleton bounding box’s
dimensions [20] provide limited shape details, which are
insufficient for effective motion retargeting that minimizes
penetration. This limitation arises because motion is influ-
enced by the shapes of limbs and other body parts. We
show 3 results as proof in Tab. 6: (1) skeleton data only;
(2) our DSR; (3) their combination. Comparing (1) and
(2), skeleton data is inadequate for preventing penetration.
Additionally, (3) shows that integrating skeleton data with
point clouds does not enhance results.

In DSR, the point cloud is NOT separated before being
fed into the point cloud transformer [7], and the K-channel
shape representation is derived via a compact MLP from
the comprehensive geometric feature produced by the trans-
former. Unlike frame-by-frame methods [19, 20] that rely
on spatially aligned skeleton data, our approach extracts
both global and local information for each joint. This en-
ables the spatial and temporal transformers to access com-
prehensive shape information, particularly benefiting the
temporal network. In Tab. 6 (4), we show the result of ex-
tracting a separate point cloud for each joint as proof. Com-
paring (2) and (4), separating the points does not benefit the
retargeting pipeline.

Table 6. Ablation study on Dense Shape Representation.

Methods MSE # MSElc # Pen% # Curv

�

Global Motion Prediction
(1) Skeleton Info 0.0367 0.0175 9.42 10.11
(2) DSR (Ours) 0.0368 0.0174 7.99 10.66
(3) Skeleton Info + DSR 0.0366 0.0174 8.22 10.05
(4) Separate Point Cloud 0.0934 0.0783 13.45 8.70

I. Efficiency of the Limb Penetration Con-
straint Module

In Tab. 7, we compare the training speeds of (1) the SDF
loss Lsdf from R2ET [20], (2) modified SDF loss [20] in-
cluding limb-limb penetration, and (3) our limb penetration



constraint Llp. Using the same number of vertices, we mea-
sured the time per iteration on an RTX 4090 graphics card.
Our limb penetration loss is approximately 8 times faster
compared with the SDF loss from [20].

Table 7. Loss Efficiency.

Methods Speed (s/iter) #
Lsdf [20] 127.66
Lsdf [20] w/ limb 133.77
Llp (Ours) 16.32

J. Demo Videos
We provide demo videos to showcase the performance of
our STaR method. These videos show the motion retarget-
ing from real-human datasets, ScanRet [18]. We include the
demo videos in the supplementary materials.


