
A. Detailed Experimental Settings

A.1. Baseline attack

BadNets [3]: An unconstrained backdoor attack with high
attack strength and low stealthiness.
DBA [11]: DBA decomposes a global trigger pattern into
separate local patterns and embeds them into the training
sets of different attackers, resulting in a more negligible
difference between benign and backdoor gradients. In our
experiment, we split the 5× 5 region into four sub-triggers
with 2× 2, 2× 3, 2× 3, and 3× 3, respectively.
LP attack [11]: LP attack injects a backdoor into backdoor-
critical (BC) layers, resulting in high stealthiness. In our
experiment, we set the hyperparameters consistent with the
original paper.

A.2. Defense

MultiKrum [1]: MK selects the m = n − f clients with
the smallest sum of pairwise L2 distances for aggregation,
where n denotes the number of clients selected in each
round and f denotes the number of tolerable attackers. In
our experiment, we use f = 2 by default.
FLTrust [2]: Following the original paper, we select a
small root dataset from clean training examples uniformly
at random. Given that CIFAR100 has more classes, we
increase the root dataset size from 100 to 200 for more
effective detection.
FLAME [6]: In our experiment, we set the
min cluster size = n/2 + 1, min sample = 1 for
HDBSCAN clustering and σ = 0.001 for Gaussian noise,
following the original paper.
Multi-Metrics [5]: In our experiments, the fraction of
selected clients for aggregation is set to p = 0.3, which is
the optimal value specified in the original paper.
DnC [9]: In accordance with the original paper, we set
the filtering fraction c = 1 and the size of sub-samples
b = 10000. We increase the number of iterations niters
from 1 to 5 for precise detection.
RLR [7]: The RLR method operates by monitoring
sign-based patterns, with the learning rate flip threshold for
individual parameters set to 4, following the original paper.
FLARE [10]: We select 10 clean samples from one class as
the root dataset, following the original paper.
DeepSight [8]: In our experiment, we set the same
hyperparameters consistent with the original paper.

B. Additional experiment result

B.1. The effectiveness of our attack in IID setting

We also evaluate our attack in the IID setting. As shown in
Table 6, our attack successfully bypasses all defenses and
achieves the highest BA in most settings.

Table 1. Main task accuracy on the unpoisoned global model.

Dataset
(Model) MK FLTrust FLAME MM DnC FLARE RLR

CIFAR10
(ResNets18) 77.69 81.27 74.84 72.11 79.16 77.96 75.55

CIFAR10
(VGG19) 73.55 83.99 62.04 73.92 82.72 84.76 77.62

CIFAR100
(ResNets18) 57.02 60.98 56.37 52.99 64.17 59.63 57.17

Table 2. The performance against DeepSight defense.

Dataset
(Model) Attack MA Best BA Avg BA MAR BAR

CIFAR10
(VGG19)

Ours 77.94 98.32 93.81 0.86 0.63
LP attack 77.96 94.61 93.55 0.81 0.34

CIFAR10
(ResNet18)

Ours 81.52 97.53 95.94 0.80 0.55
LP attack 80.54 90.88 80.2 0.74 0.32

CIFAR100
(ResNet18)

Ours 66.5 99.92 99.74 0.88 0.73
LP attack 66.81 3.70 1.19 0.39 0.85

B.2. The main task accuracy on the unpoisoned
global model

We compare the main task accuracy between the backdoored
model and the unpoisoned global model. As shown in Ta-
ble 1, our attack achieves an MA close to that of the un-
poisoned model, demonstrating its ability to maintain the
performance while successfully injecting the backdoor.

B.3. The performance against DeepSight defense
We evaluate our attack performance against DeepSight de-
fense. Table 2 shows that our attack achieves higher BA
across all settings compared with the LP attack.

B.4. More evaluation on attack stealthiness
Figure 1 and Figure 2 show our crafted malicious update is
close to the benign updates distribution, demonstrating that
our attack is much stealthier than BadNets and DBA.

Table 3. The performance on More Networks.

Model Defense MA Best BA Avg BA

ResNet50 FLAME 69.30 98.08 98.5
MM 71.39 97.14 90.52

ResNet101 FLAME 56.02 97.54 96.8
MM 65.25 98.71 95.52

Table 4. The evaluation of our attack trained on ViT model.

Defense MK FLTrust FLAME MM DnC RLR FLARE

MA/BA 97.21 94.28 99.14 97.14 98.89 97.75 97.39

B.5. The performance on more networks
We further evaluate our attack on additional networks under
the FLAME and MM settings. Specifically, we test two
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Figure 1. Cosine distance of malicious and benign model updates. A larger distance indicates that the update deviates significantly from
benign updates. The result shows the stealthiness of our attack.
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Figure 2. Manhattan distance of malicious and benign model updates. A larger distance indicates that the update deviates significantly from
benign updates. The result shows the stealthiness of our attack.

larger architectures, ResNet50 [4] and ResNet101 [4], and a
transformer-based network ViT-tiny on the CIFAR10 dataset.
As shown in Table 3 and Table 4, our attack consistently
achieves high BA across both networks, highlighting its
strong generalizability.

B.6. Impact of different degrees of non-IID
We evaluate the performance of our attack under varying
degrees of non-IID data distributions, with q = 0.5 for CI-
FAR10 and q = 0.2 for CIFAR100 by default. We then
assess the impact of higher non-IID degrees on both datasets
to explore the challenges posed by data heterogeneity. Fig-
ure 3 shows that as the degree of non-IID data distribution
increases, the BA declines, suggesting that higher non-IID
levels present greater challenges in successfully injecting
a backdoor. Nevertheless, our attack maintains robust per-
formance even under high non-IID conditions, consistently
outperforming the LP attack across all scenarios.

B.7. Impact of alignment interval
We further compare the impact of batch-wise alignment
versus epoch-wise alignment on the attack’s effectiveness.
Batch-wise alignment updates the model after each batch,
while epoch-wise alignment updates occur after each full
epoch. Table 5 shows that batch-wise alignment results in
lower BA on certain defenses, such as FLAME, compared
to epoch-wise alignment. Even under FedAvg, batch-wise
alignment performs worse than our attack. The reason for

Table 5. Ablation study on scaling interval.

Model attack No Defense FLAME MM

CIFAR10
(VGG19)

batch-wise 93.26 92.63 93.97
epoch-wise (ours) 96.16 97.46 93.40

CIFAR10
(ResNet18)

batch-wise 96.66 98.03 96.81
epoch-wise (ours) 97.21 98.16 97.52

CIFAR100
(ResNet18)

batch-wise 79.67 98.03 96.93
epoch-wise (ours) 96.27 99.88 97.05

this drop in effectiveness lies in the nature of batch-wise
updates: with each batch only considering a small subset of
samples, the attack does not effectively integrate information
from the entire global model. This can lead to inconsistent
alignment and makes the backdoor less effective.

B.8. The impact of attack interval
We further evaluate the impact of various attack intervals
under all defenses trained on CIFAR10 (ResNet18). Figure 4
shows that our attack achieves high BA even when F = 5.

B.9. The impact of the compromised client propor-
tion

We further evaluate the impact of various attack intervals
under all defenses trained on CIFAR10 (ResNet18). Figure 5
shows that our attack achieves high BA even when C = 0.02.
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Figure 3. Impact of Non-IID degree in MK and FLAME.

Table 6. The effectiveness of our approach against the baseline attack across various state-of-the-art (SOTA) defenses under a fixed-frequency
attack setting on IID datasets. BA values below 10% in CIFAR10 (10 classes) and below 1% in CIFAR100 (100 classes) are highlighted in
red, indicating a failed attack. The highest BA achieved in each setting is presented in bold. Our attack results are reported as a± b, where a
denotes the mean and b represents the standard deviation. MA and BA unit: %. Avg indicates the average. Each result is obtained as the
average over five independent runs.

Defense
VGG19 (CIFAR-10) ResNet18 (CIFAR-10) ResNet18 (CIFAR-100)

BadNet DBA LP Ours BadNet DBA LP Ours BadNet DBA LP Ours

FedAvg
MA 84.15 84.03 82.57 82.41±0.59 79.47 78.44 79.43 79.92±0.47 66.91 62.4 68.47 67.48±0.57
Best BA 98.31 59.66 95.61 97.15±0.31 98.33 21.20 97.07 97.38±0.24 100.0 0.99 78.66 99.51±0.11
Avg BA 97.95 54.91 95.36 96.85±0.29 97.84 14.87 95.73 97.27±0.21 99.99 0.68 72.62 99.31±0.04

MK
MA 82.47 82.10 81.93 82.37±1.20 76.84 76.79 76.62 79.10±1.19 62.01 60.05 63.09 62.13±0.54
Best BA 7.97 11.21 97.42 98.20±0.29 4.26 11.24 96.54 98.44±0.07 0.58 1.28 95.90 99.99±0.01
Avg BA 3.07 2.91 94.10 97.66±0.38 2.41 3.91 93.05 97.98±0.17 0.27 0.21 78.29 99.93±0.08

FLTrust
MA 83.25 83.18 82.86 82.95±0.41 81.67 80.99 81.61 81.25±0.98 61.93 63.21 63.75 64.10±0.51
Best BA 79.6 16.21 95.99 96.22±2.14 95.72 21.19 96.79 96.96±0.18 46.97 0.75 74.88 99.71±0.26
Avg BA 70.96 10.68 95.15 90.53±5.39 90.6 9.33 96.64 92.34±4.10 38.52 0.42 53.10 95.58±6.02

FLAME
MA 78.72 79.16 78.90 79.13±0.98 77.71 74.01 75.14 76.09±1.87 58.67 58.32 58.09 57.67±1.22
Best BA 31.71 10.22 95.19 97.76±0.19 10.23 11.80 97.53 98.89±0.10 1.06 0.80 74.87 99.99±0.01
Avg BA 6.15 2.52 85.33 97.49±0.93 3.33 4.57 95.69 98.57±0.15 0.51 0.42 69.70 99.98±0.01

MM
MA 82.56 81.97 81.78 82.30±0.65 78.56 73.06 78.03 78.26±0.44 58.32 58.16 59.19 58.34±0.16
Best BA 4.66 12.73 96.64 98.56±0.55 6.74 5.38 95.39 98.69±0.30 0.93 0.93 92.41 99.98±0.03
Avg BA 3.04 5.18 93.04 97.20±0.38 3.41 1.47 93.98 98.25±0.17 0.41 0.48 82.17 90.57±8.06

DnC
MA 84.2 83.89 84.46 84.78±0.11 79.72 79.27 78.87 80.49±0.34 66.69 66.99 67.12 66.71±0.23
Best BA 5.22 7.97 95.53 97.38±0.11 13.09 8.90 97.37 98.07±0.39 0.32 0.62 76.07 99.95±0.04
Avg BA 2.69 3.19 93.62 96.77±0.53 5.79 4.02 97.12 97.89±0.10 0.71 0.39 65.09 99.65±0.04

RLR
MA 82.41 81.21 82.34 81.76±0.49 78.01 75.22 76.85 77.09±0.49 57.77 60.13 60.88 61.88±0.79
Best BA 95.71 15.02 95.16 98.60±0.30 64.46 13.72 78.21 98.50±0.13 0.02 0.05 81.49 99.99±0.01
Avg BA 95.34 10.56 92.44 98.23±0.15 32.56 7.91 71.42 97.80±1.09 0.01 0.03 60.88 99.98±0.01

FLARE
MA 85.24 84.84 85.16 84.81±1.63 76.13 76.30 76.24 75.90±1.31 62.96 62.17 62.08 63.43±0.85
Best BA 98.14 48.43 96.02 97.73±0.94 97.94 6.51 4.09 97.11±1.17 100.0 1.54 89.61 99.34±1.11
Avg BA 98.02 30.03 95.24 97.28±1.23 97.72 5.76 3.77 96.46±1.30 100.0 0.72 79.6 98.34±2.92

B.10. Various trigger shapes

Figure 6 shows the three different trigger shapes applied
to backdoor a ResNet18 model, trained on the CIFAR10
dataset.

B.11. The performance on TinyImageNet

We further evaluate our attack on TinyImageNet. We follow
prior work [12, 13] and assume a non-i.i.d. data distribution
with a Dirichlet concentration parameter h = 0.9. As shown
in Table 7, our attack achieves a BA of over 99% on MK,
FLAME and MM, demonstrating its effectiveness on large-
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Figure 4. Impacts of different attack frequencies on the attack performance on CIFAR10.
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Figure 5. Effectiveness of our attack under different proportions of compromised clients (C = 0.02, 0.04, 0.06, 0.1) in fixed-pool attack
setting trained on CIFAR10.
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Figure 6. Illustration of various trigger shapes (“square,” “apple,”
and “watermark”).

Table 7. BA on TinyImageNet on IID(top)/Non-IID(bottom)
datasets.

Defense MK FLTrust FALME MM DnC RLR FLARE

BadNets 0.35 53.11 0.97 15.63 0.26 0.24 98.1
LP attack 78.29 84.10 69.70 82.17 65.09 60.88 79.6

Ours 99.01 91.85 99.88 99.36 96.63 98.93 98.23

BadNets 0.12 28.07 0.51 0.93 0.53 0.02 97.90
LP attack 78.29 57.89 61.59 77.55 64.24 73.79 67.68

Ours 98.87 93.41 99.12 99.89 95.35 96.63 97.13

scale datasets.
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