Stroke2Sketch: Harnessing Stroke Attributes for Training-Free Sketch Generation

Supplementary Material

A. Analysis and ablation

A.1. Stroke stylization

One of the main challenges in sketch extraction is how to
transfer stroke attributes from a reference sketch to recon-
struct the content image’s sketch. As discussed in the main
paper’s related work section, previous approaches often rely
on algorithmic simulations to emulate specific stroke styles.
However, the vast diversity of sketch styles in real-world
references makes it impractical to enumerate and simulate
all possible styles algorithmically.

Our proposed approach introduces a novel solution by
leveraging key-value (K-V) exchanges in attention mecha-
nisms to transfer stroke attributes. This method allows dy-
namic adaptation of reference stroke properties to the content
sketch during the generation process. However, as shown
in the third column of Fig. 13 (a), direct K-V exchanges
can sometimes distort structural elements, such as curves,
leading to incomplete or misaligned strokes.
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Figure 13. Stroke alignment results. The first two columns show
the content strokes and reference strokes, respectively. Column (a)
displays results with direct K-V exchanges, showing partial curve
distortion. Columns (b) and (c) show improvements using contour
guidance and stroke details propagation enhancement, respectively,
highlighting the balance between stroke consistency and content
preservation.

To address these limitations, we integrate contour guid-
ance and the SDPE module into the generation process.
These enhancements enable the system to retain structural
integrity while achieving stroke style consistency. As demon-
strated in Fig. 13, column (b) shows results with contour
guidance applied, which helps preserve critical outlines
while aligning strokes. Column (c) illustrates the output
with both contour guidance and SDPE, achieving a balance
between stroke stylization and content preservation.

While these methods improve stroke consistency, they
can occasionally compromise the semantic expression of
the content. To mitigate this, we introduce user-adjustable
parameters, allowing users to fine-tune the balance between
style fidelity and content preservation based on specific ap-
plication requirements. In the following section, we detail
the default parameters used in our experiments and provide
the rationale for their selection.

A.2. Experimental configuration

We operate using the Stable Diffusion v2.1-base model” [32],
leveraging DDPM inversion [16] for input image inversion
and the DDIM scheduler for denoising over 50 steps. Follow-
ing [1], cross-image attention layers are employed at specific
resolutions (32x32 and 64x64) during denoising, enhancing
stroke injection. The injection timesteps and additional set-
tings are summarized in Tab. 3. Further, object prompts are
extracted using BLIP-2' [20], and contour detection is per-
formed using TEED [37] and U2-Nett. To ensure semantic
segmentation, the unsupervised self-segmentation technique
from [30] is applied.

Hyperparameter Value/Methodology
Model Stable Diffusion v2.1-base*
Inversion DDPM inversion [16]

Denoising Scheduler | DDIM, 100 steps (30 steps skip)

32x32 (steps 10-70)

Resolution for SFI 64x64 (steps 10-90)
Contrast Strength ¢ =1.67

Contour Mask U2-Net*

Contour Detection TEED [37]

ﬁsg - 5, Btea;t =0.1
(steps 20-100)
Patashnik et al. [30]

Guidance Scales

Self-Segmentation

Contour Guidance v =0.25

Prompt Extraction BLIP-27 [20]

Device CUDA NVIDIA RTX 3090
Seed 42

Table 3. Hyperparameter settings for Stroke2Sketch experiments.

A.3. Ablation study analysis

As discussed in Sec. 4.4 of the main paper, we performed ab-
lation studies to validate the contributions of the DAM, SPM,
and SDPE. Quantitative results in Tab. 2 and qualitative com-
parisons in Fig. 12 demonstrate the critical roles of these
components in achieving high-quality sketch generation.

Removing any component results in significant perfor-
mance degradation, as reflected in both metrics and visual
outputs:

Configuration B: Without DAM. Removing DAM re-
sults in ArtFID increasing from 32.45 to 38.67 and FID

*https : / / huggingface . co / stabilityai / stable
diffusion-2-1-base

thttps://huggingface.co/docs/transformers/main/
model_doc/blip-2

thtt ps://github.com/xuebingin/U-2-Net



increasing from 22.43 to 26.53, indicating weaker style-
content alignment and semantic consistency. LPIPS worsens
to 0.672, highlighting the loss of content fidelity. Visually,
as shown in Fig. 12, the absence of DAM causes noticeable
content leakage, leading to inconsistent stroke thickness and
blurred object boundaries. For example, the foreground de-
tails, such as facial contours and clothing edges, become
misaligned, disrupting the overall semantic clarity.

Configuration C: Without SPM. Without SPM, ArtFID
increases to 36.89, FID worsens to 30.47, and LPIPS rises to
0.637, reflecting reduced semantic alignment. Fig. 12 shows
that this configuration struggles to preserve high-level ab-
stractions, with many fine details either omitted or misplaced.
For instance, the strokes in object outlines lose coherence,
and elements such as eyes or limbs become poorly defined.
This highlights the importance of SPM in maintaining se-
mantic coherence and ensuring structural integrity.

Configuration D: Without SDPE. The removal of SDPE
leads to the most significant degradation, with ArtFID in-
creasing to 40.53 and FID and LPIPS scores worsening to
32.44 and 0.598, respectively. Visually, Fig. 12 reveals that
sketches become overly coarse and noisy, with significant
background interference and a lack of refinement in stroke
details. For example, small textures and edges appear clut-
tered, reducing the clarity and aesthetic quality of the sketch.
SDPE is essential for refining fine-grained details and sup-
pressing noise propagation.

Configuration A: Full Method. The full method
achieves the best performance, with ArtFID, FID, and LPIPS
scores of 32.45, 22.43, and 0.530, respectively. Qualitatively,
as seen in Fig. 12, this configuration produces sketches that
closely align with the reference stroke style while preserving
the semantic structure of the content. Fine details, such as
facial features and object edges, are rendered with high pre-
cision, demonstrating the effectiveness of integrating DAM,
SPM, and SDPE.
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Figure 14. Overview of the Stroke2Sketch-dataset: Left - category
distribution; Right - sketch style distribution. Zoom in to view
details.

A.4. Hyperparameter effects

We demonstrate in Fig. 15, Fig. 16, and Fig. 17 how vary-
ing the hyperparameters -, 3,4, and ¢ provides users with
greater control over the sketch generation process. These
parameters influence the balance between style fidelity, con-
tent preservation, and abstraction, enabling customization
based on specific user needs. Observing the results across
various sketches, we note the interplay of these parameters
with the pretrained diffusion model priors and the initial
contour extraction quality.

Effect of v (Contour weight): The parameter -y deter-
mines the influence of content image contours on the final
sketch. As shown in Fig. 15, increasing -y results in sketches
with more pronounced alignment to the original content
structure, improving realism. For example, at v = 0.25 (our
default setting), the contours are well-preserved while main-
taining the reference stroke style. However, higher values of
v (e.g., v = 0.6) lead to excessive adherence to the content
outline, compromising the transfer of stylistic features. Con-
versely, very low values (e.g., ¥ = 0.15) result in sketches
with diminished structural coherence, favoring abstraction.

Effect of 3,, (Stroke guidance scale): The parameter
Bsg controls the weight of stroke attributes transferred from
the reference image. In Fig. 16, we observe that lower values
of B4 (e.g., Bsg = 2) yield sketches with reduced styliza-
tion, leaning more toward content fidelity. As 3, increases,
the reference stroke features become more prominent, with
the optimal balance achieved at 85, = 5. However, exces-
sively high values (e.g., 8s4 = 15) can lead to exaggerated
stylization, overshadowing the content image’s structural
elements.

Effect of ( (Contrast strength): The parameter ¢ en-
hances contrast in the attention maps, aiding in stroke detail
refinement. As shown in Fig. 17, low values of ( (e.g.,
¢ = 0.8) result in sketches with softer, less defined strokes.
The default setting (( = 1.67) provides a balanced output
with clear stroke details and stylistic alignment. Increasing ¢
beyond 3.5 introduces over-sharpening, leading to unnatural
and overly rigid strokes.

Combined effects and user control: By varying these
parameters in combination, users can control the degree
of abstraction and stylization. For instance, increasing -y
while decreasing 3, emphasizes content realism, which is
suitable for architectural sketches. In contrast, lowering
and increasing 3,4, enhances artistic abstraction, ideal for
expressive line art. Default settings of ( = 1.67, v = 0.25,
and 3,4 = 5 provide a general-purpose configuration that
balances stroke style consistency with content preservation.
Users can further refine these parameters based on their
specific objectives.



B. Evaluation details

B.1. Stroke2Sketch-dataset

As described in the main paper, the Stroke2Sketch-dataset
was created to assess the human perception of different
sketch extraction methods. Fig. 14 provides a detailed visual-
ization of the category distribution and sketch style diversity
in the ref2sketch-dataset. This comprehensive dataset serves
as a benchmark for evaluating both stylistic fidelity and se-
mantic alignment in sketch generation tasks.

B.2. Baseline implementations

When comparing to alternative methods, we used the follow-

ing implementations or demo websites:

* Ref2sketch: https://github.com/ref2sketch/ref2sketch

¢ Semi-ref2sketch: https://github.com/Chanuku/semi_ref2
sketch_code

¢ Informative-drawings: https://github.com/carolineec/infor
mative-drawings

» IP-Adapter: https://github.com/tencent-ailab/IP-Adapter

¢ InstantStyle: Huggingface demo
https://huggingface.co/spaces/InstantX/InstantStyle

¢ InstantStyle-plus: https://github.com/instantX-
research/InstantStyle-Plus

* CSGO: Huggingface demo
https://huggingface.co/spaces/xingpng/CSGO
* RB-Modulation: Huggingface demo

https://huggingface.co/spaces/fffiloni/RB-Modulation
B.3. Quantitative results on Stroke2Sketch-dataset

As shown in Tab. | in the main paper, our method achieves
the lowest ArtFID and FID values among both training-based
and training-free baselines, demonstrating its superiority
in style fidelity and content preservation. Although our
LPIPS value is slightly higher than Semi-ref2sketch [34], this
discrepancy is expected due to the unique emphasis on stroke
consistency in our approach. Notably, LPIPS, as a pixel-level
similarity metric, does not fully capture the complexity of
reference-based sketch extraction, where abstract artistic
effects and semantic alignment are crucial. This limitation is
evident in user evaluations, where our method consistently
outperforms baselines, as detailed in Sec. 4.2 of the main
paper.

Informative-drawings [5], designed to work with prede-
fined styles, performs well on similar styles but lacks the
flexibility to generalize to arbitrary reference sketches.

B.4. Quantitative results on FS2K dataset

In addition to the Stroke2Sketch-dataset, we evaluated our
method on the FS2K dataset. Tab. 4 highlights our method’s
superior performance compared to specialized sketch extrac-
tion methods (Ref2sketch [2], Semi-ref2sketch [34]) and
recent style transfer methods (StyleID [7]). Our method

achieves the lowest FID (128.84) and LPIPS (0.4057) values,
showcasing its robustness in producing high-quality sketches
with strong semantic and stylistic fidelity.

While Ref2sketch and Semi-ref2sketch demonstrate rea-
sonable performance due to their focus on training with
paired data, they lack the flexibility to adapt to varied and
abstract reference sketches. StyleID, although effective in
style transfer tasks, struggles with precise alignment when
handling content-specific sketches. In contrast, our approach
leverages contour guidance and cross-image attention to pre-
serve both structural details and stylistic nuances, ensuring
high-quality results even in complex scenarios.

Methods LPIPS FID

Ref2sketch 0.5309 228.15
Semi-ref2sketch | 0.4540 185.26
StyleID 0.5494 208.64
Ours 0.4057 128.84

Table 4. Quantitative results of comparison with baselines on FS2K
dataset

B.5. Perceptual Study

Our user study interface (Fig. 18) displays the source content-
reference pair as visual anchors alongside four anonymized
stylized results in randomized layouts. Participants indepen-
dently evaluated 20 unique image pairs, with each session
limited to 5 minutes to ensure focused judgments. The in-
terface incorporated a training phase showing prototypical
examples of high/low content extraction and stroke quality
before formal evaluation. We implemented quality control
by tracking response times (excluding votes < 3s as rushed)
and adding attention-check questions. Detailed voting distri-
butions per image pair and participant demographic profiles
(85% with art-related backgrounds) are archived in the sup-
plemental material.

C. Additional Results

As discussed in Sec. 4.1 of the main paper, we compare
Stroke2Sketch with eight state-of-the-art methods that sup-
port both reference-based and text-based inputs, ensuring a
fair evaluation of our approach. This design choice allows
for a more equitable comparison, as models requiring only
textual prompts or those designed for unrelated tasks (e.g.,
vector sketch generation or appearance transfer methods
such as [1]) are fundamentally different in their objectives
and are excluded from the subsequent visualizations.

Fig. 19 and Fig. 20 present additional comparison re-
sults across diverse styles and content images, demonstrating
the robustness of our method. Meanwhile, Fig. 21 show-
case sketches generated by Stroke2Sketch across different



datasets, further validating its adaptability to varied styles
and semantic requirements.

This focused evaluation highlights the advantages of our
approach in achieving consistent stroke fidelity and semantic
alignment while excluding comparisons with methods that
do not align with the reference-based sketch extraction task.

D. Failure Cases

While our method demonstrates strong performance across
a variety of reference styles, certain limitations remain when
handling reference sketches with extreme characteristics.
Specifically, sketches with overly simplistic or highly com-
plex strokes pose challenges. As illustrated in Fig. 21, cases
involving highly abstract continuous single-line references
or densely detailed brushstroke references often result in
suboptimal outcomes.

For instance, overly thick or abstract strokes can lead
to detail loss or distortions in features like facial expres-
sions, particularly in areas such as the eyes or intricate tex-
tures. Similarly, when the reference sketch exhibits densely
packed details, the model may struggle to balance semantic
consistency and stroke fidelity, resulting in either excessive
abstraction or loss of critical content elements.

This behavior mimics how human artists adapt their in-
terpretations based on the nature of the reference strokes.
However, the challenge of fully decoupling semantic infor-
mation from stroke attributes while maintaining both fidelity
and style remains an open problem. Future work could ex-
plore advanced segmentation or attention mechanisms to
address these limitations and enhance robustness in extreme
cases.



7=1.67

vy =0.35

Figure 15. Visualization of -y variations. Increasing -y improves contour alignment but reduces stylistic abstraction. Default setting: v = 0.25.
Zoom in to view details.
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Figure 16. Visualization of (4 variations. Higher 3,4, emphasizes stroke attributes but may diminish content fidelity. Default setting:
Bsg = 5. Zoom in to view details.
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Figure 17. Visualization of ¢ variations. Optimal contrast strength is achieved at { = 1.67. Excessive ¢ introduces over-sharpening effects.

Zoom in to view details.



Perception Study

Below are the content image and the reference sketch image, respectively. Please select the one in which you think
these methods are faithful to both the content and the reference style strokes in performing the sketch extraction.

*01 Gr_oup 1:

Reference

Which of the sketch above better faithful to both the content and
the reference style strokes in performing the sketch extraction?

Which one is better in content extraction?

Which one is better in stroke stylization?

Figure 18. Designed user study interface.
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Figure 19. Comparison of sketches generated by Stroke2Sketch and baseline methods, including Ref2Sketch, Semi-ref2Sketch, CSGO,
IP-Adapter, InstantStyle, RB-Modulation, and StyleID. Each row presents a content image, reference sketch, and results from different

methods. Zoom in to view stroke details, highlighting the accurate alignment of stroke attributes and content semantics achieved by our
approach.
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Figure 20. Additional qualitative comparison of Stroke2Sketch against baseline methods. The rows showcase content images, reference
sketches, and outputs from various methods. Note the stroke details and style consistency in the results generated by our method. Zoom in to
view stroke details for a clearer examination of stylistic fidelity and semantic alignment.
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Figure 21. Comparison of sketch generation results using Stroke2Sketch across diverse content and reference styles. The first row shows the
content images, and the second row provides the reference sketches representing varied stroke attributes. Rows 3-8 illustrate the generated
sketches across a range of abstraction levels and stylistic alignments. Zoom in to view the nuanced details in stroke attributes.



