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1. Architecture Analysis of Searched DNNs

We further summarize and analyze the architecture in the
paper.
• R-Score tends to select convolutional operations over

pooling layers, which increases the number of learnable
parameters.

• R-Score prefers depthwise separable convolutions over
dilated convolutions, which enhances computational ef-
ficiency and generalization ability.

• R-Score tends to use smaller convolutional kernels, which
helps reduce the model’s sensitivity to small-scale pertur-
bations.

2. Experiment Details of NAS-Rob-Bench-201

2.1. NAS-Rob-Bench-201
The design purpose of NAS-Rob-Bench-201 [15] is to
quickly provide a test set from an architectural perspective
to combat malicious attacks for the robust architecture de-
sign community. This benchmark contains 15,625 fully ad-
versarially trained DNN architectures. We can transfer NAS
algorithms to this benchmark to verify the algorithms’ abil-
ity to search for robust architectures.

2.2. Analysis of Experimental Results
In NAS-Rob-Bench-201, we carefully verified the Bench-
mark and found slight differences in the performance of
the optimal architecture (best) due to the minor errors in-
troduced by the random seed [15].

As shown in Table 1, TRNAS is compared with exist-
ing SOTA NAS algorithms. * represents the original data
extracted from NAS-Rob-Bench-201 without any modifica-
tions. We strictly follow the search process described for
the comparison algorithms [2–4, 10, 13] and transfer them
to NAS-Rob-Bench-201 for comparison. The top part de-
scribes the performance of the optimal architecture in the
benchmark [15]. The middle part is the performance com-
parison analysis of standard NAS [9, 10, 13]. The lower
part is the comparison analysis of robust NAS [2–4, 12].

We set the evaluation count of all NAS methods in NAS-
Rob-Bench-201 to 1,000, whether for evolutionary or ran-
dom search. In the best-case scenario, we only need 130
evaluations to find the best architecture. Our TRNAS first
performs about 30 pruning evaluations using R-Score, elim-
inating obviously poor search space operations. For each
edge, we delete a candidate operation. Subsequently, 100
architecture evaluations are conducted, allowing the evolu-
tionary algorithm to search for the promising architecture

Table 1. NAS-Rob-Bench-201

Method Clean ACC FGSM PGD FGSM PGD
(3/255) (3/255) (8/255) (8/255)

Best* [15] 79.4 69.8 69.2 53.7 48.2
Best [15] 79.6 69.7 69.2 53.5 48.1
Eigen* [16] 76.6 67.4 66.8 52.0 47.1
DARTS* [9] 33.2 28.6 28.5 21.5 21.3
NASI* [14] 66.6 57.1 56.7 41.0 37.9
PADA [10] 76.0 66.8 66.2 51.3 46.7
SWAP [13] 78.2 68.6 68.1 52.3 47.2
AdvRush* [12] 58.7 49.2 48.9 35.2 33.0
LRNAS [4] 72.9 63.7 63.2 48.5 44.3
CRoZe [3] 77.2 67.5 67.0 51.4 42.7
ZCPRob [2] 77.9 68.2 67.9 51.9 47.0
TRNAS 79.6 69.7 69.2 53.5 48.1

in NAS-Rob-Bench-201. Therefore, regarding design effi-
ciency for robust architectures, TRNAS significantly out-
performs SOTA robust NAS algorithms, such as ZCPRob
[2], CRoZe [3], and LRNAS [4]. Moreover, TRNAS also
outperforms standard NAS algorithms such as SWAP [13],
PADA [10], and DARTS [9].

3. Experiment Details of DARTS
3.1. RobustBench
We use RobustBench (proposed by ZCPRob [2]) to evalu-
ate the R-Score. RobustBench includes 223 adversarially
trained network architectures and their adversarial accura-
cies. These architectures are randomly sampled from the
DARTS [9] search space, which is widely recognized in
robust NAS. Unlike standard NAS, collecting benchmark
datasets for robust NAS is expensive. In addition, adver-
sarial training takes over 10 × longer than standard training
[2, 3]. Therefore, the limited number of architectures in
RobustBench is normal. TRNAS adopts the state-of-the-art
(SOTA) RobustBench as a benchmark to ensure a fair com-
parison.

3.2. Parameter Settings
In the search stage, we use a training-free evolutionary NAS
method to search for robust DNNs. We measure the search
cost based on the runtime of a single GPU. First, the search
space consists of 8 stacked cells within the DARTS frame-
work. Secondly, TRNAS performs 20 evolutionary updates.
The population size for both the parent and offspring is set
to 50. Subsequently, we used the R-score model to evaluate
100 architectures in the population. There are 20 iterations
in total, so we need 2,000 (20 × 100) evaluations. How-
ever, there are 1,000 architectures that have already been



Table 2. Efficiency Analysis of Training-Free Robust Methods

Methods All Architectures Single Effective Rate

CRoZe [3] 4075 s 2.04 s 79.30 %
ZCPRob [2] 9322 s 4.66 s 98.84 %
TRNAS 4845 s 2.42 s 100.0 %

evaluated, so only 1,000 evaluations are needed, about 0.02
GPU-days. The clustering size e of the multi-object selec-
tion (MOS) strategy during the search is 20. After complet-
ing the architecture search, the selected optimal architecture
undergoes further adversarial training.

In the training stage, we follow the settings of previous
robust NAS methods and use 7-step PGD [11] for adversar-
ial training. At this stage, the network consists of 20 stacked
cells. For CIFAR-10 and CIFAR-100 [7], we perform ad-
versarial training for 120 epochs. The initial learning rate
is set to 0.1 and decays to 0.01 at the 100th training epoch.
The momentum is 0.9, and the weight decay is 1e-4. The
batch size for the training data is set to 64. The total pertur-
bation scale is 8/255, and SGD is used for network param-
eter optimization. For Tiny-ImageNet-200 [8], the training
epoch is set to 90, the batch size is 26, and the initial num-
ber of channels is 64. Subsequently, the initial learning rate
is 0.1, which decays to 0.01 and 0.001 at the 30th and 60th
epochs, respectively. It is worth noting that the network ro-
bustness is usually best around 65th epoch from AdvRush
framework [12].

In the evaluation stage, we use FGSM [5], PGD [11],
and AutoAttack [1] for adversarial attacks to evaluate the
trained architecture’s adversarial robustness. The total per-
turbation range for the above attacks is set to 8/255. The
single-step perturbation for FGSM [5] attacks is 8/255. In
addition, the single-step perturbation for PGD attacks [11]
is 2/255, and 20 or 100 steps are executed as needed. All
experiments are run on a single NVIDIA RTX 4090 GPU
and implemented using the PyTorch 2.0 framework.

3.3. The Search Efficiency of TRNAS

Although our R-Score proxy requires additional consump-
tion, it achieves a 20× speedup over weight-sharing meth-
ods. In Table 2, under the same environment, the cost
of evaluating 1,000 network architectures using R-Score is
only 52% of that of ZCPRob [2]. In addition, CRoZe [3]
can only predict 79.30% of the performance of architec-
tures from RobustBench, while R-Score can predict each
architecture. After multi-process optimization, our TRNAS
method can be completed within 0.01 GPU days on a single
4090, achieving SOTA efficiency.

3.4. Performance on Tiny-ImageNet-200
The experimental results on Tiny-ImageNet-200 are show
in Table. 3. TRNAS still outperforms other robust NAS
methods in clean and robust scenarios.

Table 3. Comparison of SOTA NAS Methods on Tiny-ImageNet

Method Params Clean Acc FGSM PGD20

RoBoT [6] 6.47 54.30 23.93 18.17
SWAP [13] 9.64 51.28 40.85 11.88
CRoZe [3] 13.03 54.28 22.09 17.28
ZCPRob [2] 7.37 52.83 32.81 15.72
TRNAS 9.37 54.69 42.54 18.48

3.5. Statistical analysis
We repeat the search experiment 20 times to ensure the re-
liability and stability of the experimental results. The ex-
perimental results show that TRNAS is the most robust and
lightweight across all metrics. Table 4 details the compar-
ative results of TRNAS with baseline methods CRoZe [3]
and ZCPRob [2] across various metrics. In addition, the ex-
perimental data for CRoZe and ZCPRob are selected from
their respective best performance in their papers, while the
data of TRNAS represents the average and standard devia-
tion of 20 experiments.

Table 4. The Statistical Result Analysis of SOTA NAS Methods

Methods Params Flops Clean FGSM PGD20

CRoZe [3] 5.5 841.00 83.30 58.47 52.63
ZCPRob [2] 3.4 555.54 85.60 60.20 52.75
TRNAS avg. 3.39 549.84 85.94 60.66 52.96

(± std) ±0.28 ±38.91 ±0.53 ±0.53 ±0.38

The average parameters of TRNAS are 3.39MB, lower
than those of CRoZe and ZCPRob, demonstrating a set of
lighter architectures. In terms of computational complex-
ity, the average Flops of TRNAS is 549.84M, significantly
lower than those of CRoZe and ZCPRob, indicating a clear
advantage in computational efficiency. In performance met-
rics, the average performance of TRNAS in Clean, FGSM,
and PGD test scenarios is 85.94% (±0.53), 60.66% (±0.53),
and 52.96% (±0.38), respectively. These results are superior
to those of CRoZe and ZCPRob, showing higher robustness
and accuracy. Additionally, the smaller standard deviation
of TRNAS across multiple metrics demonstrates stronger
stability of performance.

3.6. Concise Theoretical Explanation of R-Score
The linear activation capability captures local perturbation
sensitivity, while feature consistency reflects global stabil-
ity inspired by Lipschitz continuity. Our R-Score com-
bines both aspects, offering a more comprehensive robust-
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Figure 1. Prediction Errors of Different Proxies.

ness evaluation than ZCPRob [2] and CRoZe [3]. Figs. 1(a)
and (c) show the prediction results of CRoZe and ZCPRob
on some architectures from RobustBench [2]. Both fail to
distinguish some architectures with significant performance
differences, resulting in duplicated scores. In contrast, R-
Score in Figs. 1(b) and (d) can more accurately distinguish
architectural performance.
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