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Figure 1. More 3D morphing sequences generated by our method. More video results can be found here.
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1. More Qualitative Experimental Results
To better demonstrate the effectiveness of our method, we
provide additional results in Fig. 1, Fig. 2, and here (video
results for 360° display). Our method can handle object
pairs with significant differences in shape structure and tex-
ture, providing a novel research direction for future ex-
ploration of more complex objects and adaptive morphing
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https://songlin1998.github.io/Textured-3D-Morphing/
https://anonymous-888.github.io/anonymous/
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Figure 2. More qualitative comparisons of different methods from tasks, morphing tricks, and generative priors. More video results can
be found here.

methods.

2. 3D Generation Model: Gaussian Anything

Gaussian Anything [13] introduces a 3D generation frame-
work built on a point cloud-based 3D latent space. The
3D Variational Autoencoder (VAE) (See 2.1) efficiently en-
codes 3D data into a dynamic latent space, which is sub-
sequently decoded into detailed Surfel Gaussians. Diffu-
sion models (See 2.2) trained on this compacted latent space
achieve remarkable results in 3D generation and editing
conditioned on text, as well as in generating high-quality
3D content from images on diverse real-world datasets. For
more implementation details, please see their project page.

2.1. Point-Cloud Structured 3D VAE
A 3D VAE is introduced that takes multi-view posed RGB-
D (Depth)-Normal renderings as input. These renderings
are easy to generate and provide a rich set of 3D attributes
corresponding to the input object. Each view’s information
is concatenated along the channel dimension and efficiently
encoded using a scene representation transformer [17], pro-
ducing a compact latent representation of the 3D input.

Rather than directly applying this latent representation to
diffusion learning, the model’s innovative method trans-
forms unordered tokens into a shape that mirrors the 3D in-
put. This transformation is achieved by cross-attending [11]
the latent set with a sparse point cloud sampled from the 3D
shape. This point-cloud structured latent space significantly
aids in disentangling shape and texture, as well as enabling
3D editing. Subsequently, a DiT-based 3D decoder [14]
progressively decodes and upscales the latent point cloud
into a dense set of Surfel Gaussians [9], which are raster-
ized into high-resolution renderings to guide the 3D VAE
training.

2.2. Cascaded 3D Generation with Flow Matching
After the 3D VAE is trained, they conduct cascaded latent
diffusion modeling on the latent space through flow match-
ing [1] using the DiT [14] framework. To encourage bet-
ter shape-texture disentanglement, a point cloud diffusion
model is first trained to carve the overall layout of the in-
put shape. Then, a point cloud feature diffusion model is
cascaded to output the corresponding feature conditioned
on the generated point cloud. The generated featured point
cloud is then decoded into Surfel Gaussians [9] via pre-

https://songlin1998.github.io/Textured-3D-Morphing/
https://nirvanalan.github.io/projects/GA/
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Figure 3. Evaluation of 3D generative model capabilities.
Based on accessibility, we tested the interpolation performance of
projects with available training code and model details, namely
3DTopia-XL [3] and Gaussian Anything [13] in the image-to-3D
setting. We found that while 3DTopia-XL generates high-quality
3D assets, its latent space lacks reasonable generative capabilities,
as evidenced by the interpolation results between the 3rd and 6th
samples.

trained VAE for downstream applications.

2.3. Implementation Details

The 3D diffusion prior [13] is trained on the G-Objaverse [4,
15] dataset. Its geometry and texture diffusion models are
based on the DiT architecture [2], which consists of 24
layers, 16 attention heads, and a 1024-dimensional hidden
space. The sparse point cloud zG has a size of M × 3 (with
M = 768), and the corresponding feature zT has dimen-
sions M × 10.

3. How to Align/Prepare the Input 3D and Im-
ages with Gaussian Anything?

For textured 3D representations, multi-view RGB, depth,
and normal images can be directly rendered, and then the
corresponding latent can be obtained using the 3D VAE of
Gaussian Anything. For a single image, two methods are
possible: (a) The 2D image can be lifted to multi-view using
a multi-view generation model [18], and then a renderable
textured 3D model can be trained from these multi-view im-
ages, or (b) A direct image-to-3D method [10] can be used
to obtain the textured 3D model.

4. How to Choose Appropriate 3D Diffusion
Models for 3D Morphing?

Selecting an appropriate 3D generative model is founda-
tional for texured 3D regenerative morphing, as it deter-
mines (a) the range of 3D object categories that can be han-
dled and (b) the ability to integrate diverse information for
generating smooth interpolation sequences. We followed
four criteria when selecting a 3D generative model for our
research:

(a) Accessibility: Training 3D generative models is
highly resource-intensive, and high-quality models capa-
ble of generating diverse outputs are often proprietary as-
sets, accessible only through APIs. This limits our abil-
ity to probe the internal characteristics and potential issues
of such models. Therefore, an ideal 3D generative model
should be open-sourced, including all testing and training
files, datasets, and model checkpoints. Based on this cri-
terion, we selected Gaussian Anything [13] and 3DTopia-
XL [3] as our potential target models. It is worth noting
that, prior to the ICCV deadline, the most anticipated text-
to-3D models—Trellis [23] and CLAY [26]—have not been
open-sourced, preventing us from conducting experiments
on them.

(b) Fairness: For data-driven studies, fairness is re-
flected in the use of publicly available datasets for train-
ing, ensuring future researchers can build on our work
with a well-established baseline or benchmark. The Obja-
verse [4] dataset, currently one of the most widely adopted
3D datasets, is particularly suitable for academic research.
Thus, we prefer Gaussian Anything [13], which is trained
on Objaverse.

(c) Generation Quality: 3D generative modeling has
become one of the most competitive and rapidly evolving
research areas in recent years, with many papers show-
casing impressive results. However, unlike 2D images or
videos, 3D training data is harder to collect at scale, and
no existing model can perfectly generate a full range of 3D
objects. Therefore, we prioritized models capable of gener-
ating a wide variety of objects, ideally including categories
such as animals, buildings, furniture, food, transportation,
and plants. After evaluating the performance of several
state-of-the-art 3D generative models on image-to-3D and
text-to-3D tasks, we selected Gaussian Anything [13] as our
research model.

(d) Preliminary Interpolation Feasibility: For mod-
els with strong generative capabilities, the quickest way to
determine their suitability for 3D morphing research is to
conduct basic interpolation tests. Not all generative models
can effectively fuse different information for interpolation.
Among the tested models (as shown in Fig. 3), Gaussian
Anything [13] demonstrated the best interpolation perfor-
mance, making it the most suitable choice for our study.



5. Baseline Methods and Implementation De-
tails

5.1. DiffMorpher
Given two images, DiffMorpher [25] uses two LoRAs [8]
to fit the two images respectively. Then the latent noises
for the two images are obtained via DDIM inversion [19].
The mean and standard deviation of the interpolated noises
are adjusted through AdaIN. To generate an intermediate
image, they interpolate between both the LoRA parameters
and the latent noises via the interpolation ratio α. In addi-
tion, the text embedding and the K and V in self-attention
modules are also replaced with the interpolation between
the corresponding components. Using a sequence of α and
a new sampling schedule, their method will produce a se-
ries of high-fidelity images depicting a smooth transition
between the two given images. We followed the script and
default parameter settings given by Diffmorpher and used
their open-source code to produce the results.

5.2. AID
Similar to the DiffMorpher [25] framework, AID [7] re-
moves the LoRA fitting and introduces the following addi-
tional modifications: (a) Replacing both cross-attention and
self-attention mechanisms during interpolated image gener-
ation with fused interpolated attention; (b) Selecting inter-
polation coefficients using a Beta prior; (c) Injecting prompt
guidance into the fused interpolated cross-attention. We im-
plemented the generation of relevant results based on the
code of Stable Diffusion 1.5 [16], and all settings follow the
default settings of AID. More details can be found on their
project page.

5.3. MV-Adapter
MV-Adapter [10] is a versatile plug-and-play and state-of-
the-art adapter that turns existing pre-trained text-to-image
(T2I) diffusion models to multi-view image generators. We
generated image morphing results based on their Image-to-
Multiview code and Stable Diffusion 2.1. The only change
is that we linearly interpolated the condition features of the
source image and target image extracted by their image en-
coder according to different morphing weights.

5.4. Luma
The Dream Machine of Luma AI is based on the DiT [14]
video generation architecture, capable of generating high-
quality videos with 120 frames in just 120 seconds, en-
abling rapid creative iteration. It understands physical in-
teractions, ensuring that the generated video characters and
scenes maintain consistency and physical accuracy. We ac-
cessed their API and utilized the video generation func-
tion to generate intermediate video frames by providing the
source image as the first frame and the target image as the

Table 1. Task setting comparison.

Shape Texture Aligned Dataset Out-of-Domain

MeshUp ✓ × No Need ✓
SRIF ✓ × No Need ✓

NeuroMorph ✓ × Need ×
CharacterMixer ✓ × Need ×

MorphFlow ✓ ✓ No Need ✓
Ours ✓ ✓ No Need ✓

last frame. For instance, for the “polar bear” to “wooden
stool” morphing video generation, the guiding prompt we
used is: “Morph a polar bear into a wooden stool, smoothly
interpolating both geometry and texture, with the object al-
ways remaining at the center of the frame.”

5.5. MorphFlow
MorphFlow [22] introduces an optimization-based method
for multi-view regenerative morphing. The method does not
assume prior knowledge of the categories or affinities be-
tween the source and target images, nor does it rely on pre-
defined correspondences. By utilizing optimal transport, the
method interpolates a volume for rendering smooth multi-
view transitions. Additionally, a rigid transformation is in-
corporated to preserve structure during the morphing pro-
cess. The method is highly efficient, learning and rendering
a morphing renderer from scratch in just 30 minutes, with
the ability to generate a novel-view morph per second dur-
ing morphing and rendering. We first obtain the multi-view
images along with their corresponding COLMAP camera
annotations, and then generate the morphing output using
their open-source code with the default parameter settings.

6. Related Works That You Might Confuse:
Comparisons with Shape Morphing Meth-
ods and Out-of-Setting Clarification

As shown in Tab. 1, our setting focuses on textured
3D morphing, a task currently shared only with Mor-
phFlow [22]. Earlier works like NeuroMorph [5] and Char-
acterMixer [24] were trained on aligned datasets, essentially
learning in-domain, topology-aligned correspondences be-
tween 3D data. However, these methods fail to general-
ize such correspondences to out-of-domain 3D representa-
tions. Other methods, such as MeshUp [12] and SRIF [20],
explored shape morphing by leveraging generative priors.
While they recognized the importance of generative pri-
ors for improving generalization in morphing tasks, their
work was limited to shape-only morphing and did not re-
lease source code. We qualitatively compared results from
their manuscripts with ours, as shown in Fig. 4, demonstrat-
ing that our method not only performs morphing between
textured 3D representations with similar topologies (e.g.,
Mario and Luigi) but also handles morphing between repre-
sentations with significant category differences (e.g., a boot
and a teddy bear).

https://github.com/Kevin-thu/DiffMorpher
https://github.com/QY-H00/attention-interpolation-diffusion
https://github.com/huanngzh/MV-Adapter
https://dream-machine.lumalabs.ai/
https://github.com/jimtsai23/MorphFlow
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Figure 4. Comparison of related methods. Our method focuses on textured 3D morphing, whereas MeshUp [12], SRIF [20], Neuro-
Morph [5], and CharacterMixer [24] are limited to shape-only 3D morphing. Note that all results outside the dashed boxes are sourced
from their respective manuscripts.
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Figure 5. Explicit correspondence. Using explicit correspondence for morphing presents two major challenges: first, obtaining seman-
tic features for tens of thousands of points is extremely difficult; second, the correspondences obtained are typically part-wise, which is
inadequate for morphing tasks that require dense correspondences. Note that the results within the yellow dashed boxes are from Dense-
Matcher [27] manuscript.



Figure 6. Differences between tokens in two aligned 3D objects from different blocks. At the same time step, there was no notable
difference in token distances between the object and the scaled object across various blocks.

Table 2. Beta distribution samples for different alpha and beta (ordered from smallest to largest).

Alpha, Beta 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1, 1 0.19 0.23 0.25 0.34 0.39 0.50 0.52 0.69 0.76 0.77 0.81 0.83 0.84 0.85 0.88 0.89 0.92 0.94 0.94 0.96
3, 3 0.16 0.36 0.39 0.50 0.52 0.54 0.63 0.71 0.73 0.73 0.74 0.77 0.77 0.80 0.83 0.84 0.85 0.88 0.88 0.90
5, 5 0.23 0.30 0.34 0.35 0.44 0.49 0.56 0.66 0.70 0.71 0.73 0.75 0.78 0.80 0.82 0.83 0.85 0.86 0.88 0.89

15, 15 0.36 0.37 0.42 0.42 0.44 0.49 0.52 0.57 0.57 0.58 0.60 0.62 0.63 0.64 0.66 0.67 0.69 0.70 0.72 0.73
20, 20 0.38 0.42 0.48 0.48 0.53 0.56 0.57 0.59 0.56 0.59 0.61 0.63 0.64 0.66 0.67 0.68 0.70 0.71 0.72 0.74
10, 15 0.34 0.37 0.39 0.41 0.42 0.43 0.52 0.52 0.57 0.56 0.57 0.59 0.60 0.61 0.63 0.65 0.66 0.67 0.68 0.69
15, 10 0.37 0.48 0.52 0.55 0.57 0.58 0.59 0.67 0.70 0.80 0.80 0.82 0.84 0.85 0.86 0.88 0.89 0.90 0.91 0.92
5, 15 0.14 0.17 0.18 0.20 0.23 0.24 0.29 0.32 0.38 0.41 0.42 0.44 0.46 0.48 0.49 0.50 0.51 0.53 0.54 0.55
15, 5 0.55 0.58 0.64 0.66 0.68 0.69 0.70 0.80 0.89 0.89 0.90 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.98 1.00

It is important to emphasize that our setting focuses
on textured 3D morphing, which requires fulfilling two
conditions: (1) the representation must be textured 3D
(such as textured point clouds, textured meshes, or vol-
umetric representations like Gaussian splatting and neu-
ral radiance fields); (2) both a source and a target must
be specified, as we need to generate a smooth and plau-
sible sequence. In contrast, text-based 3D editing tasks
like Instruct-nerf2nerf [6], which do not ensure intermedi-
ate state plausibility and lack a specified target, fall outside
the scope of our task setting.

7. Semantics of the Same Position in Different
Blocks

We also measured the differences between tokens from dif-
ferent blocks by testing with scaled 3D object pairs, as
shown in Fig. 6. We found that, at the same time step, there
was no significant difference in the token distances between
the object and the scaled object across different blocks. Fur-
thermore, the computational cost of Token Reordering and
Low-Frequency Enhancement across all blocks is manage-
able. More importantly, performing manipulation across
all block helps preserve the model’s inherent capabilities,

making our method more robust to input objects. However,
our work can also inspire future research in 3D generation,
such as exploring improved semantics-aware training meth-
ods for 3D generation.

8. Exploratory Experiments with Explicit Cor-
respondence

Inspired by traditional shape morphing and image morph-
ing, our initial method aimed to establish explicit corre-
spondences between textured 3D representations. Specifi-
cally, we sought to assign DIFT [21] features to each Gaus-
sian [9]. This method was based on the fact that DIFT fea-
tures have been validated to provide 3D correspondence for
the same object from different viewpoints and semantic cor-
respondence across objects, making this introduction rea-
sonable.

However, we overlooked a key issue: the large num-
ber of 3D points, which led to two main drawbacks: (a)
high computational cost and (b) the feature handling, which
works well for single-point-to-single-point searches from a
single viewpoint in 2D foundation models, becomes diffi-
cult when attempting to preserve the feature’s approximate
consistency across different viewpoints.



Table 3. Prompts for testing cases.

Index Objects Prompts

1 Stool “A wooden tripod stool.”
2 Chair “A blue plastic chair.”
3 Llama “A realistic 3D model of a llama.”
4 Dog “A realistic 3D model of a Husky dog with a big head”
5 Pumpkin “A flat, orange, pixelated Lego pumpkin with a green stem.”
6 Mushroom “A light green mushroom.”
7 Car “A sleek car with smooth curves, shiny metallic surface, and detailed wheels.”
8 Truck “A large red truck with a spacious cargo bed, sturdy wheels, and a robust front grille.”
9 Lounge Sofa “A purple lounge sofa.”

10 Massage Sofa “A pink medieval-style massage sofa with intricate carvings, plush upholstery, and a comfortable, luxurious design.”
11 Mario “A cartoon-style Mario character with a red hat, blue overalls, white gloves, and a cheerful expression.”
12 Luigi “A cartoon-style Luigi character with a green hat, blue overalls, and a tall, thin build.”
13 Tank “A 3D model of a military tank with detailed textures.”
14 Teapot “A classic teapot.”
15 Bowl “A simple teal bowl.”
16 Fighter Jet “A sleek fighter jet with sharp aerodynamic lines, detailed metallic surface, and camouflage paint.”
17 Seagull “A seagull with detailed wings, a sleek body, and a realistic beak, in natural white and gray colors.”
18 Cannon “A cannon with a long, cylindrical barrel mounted on a wooden carriage.”
19 House “A toy house in a fairy-tale style with whimsical architecture, pastel colors, and charming details like a crooked chimney and flower decorations.”
20 Church “A classic church with tall spires, arched windows, and a large central entrance.”
21 Skull “A 3D model of a human skull.”
22 Animal Skull “A 3D low poly model of an animal skull with gray appearance.”
23 Dinosaur “A dinosaur with a large, muscular body, a long tail, and realistic skin texture.”
24 Teddy Bear “A red teddy bear.”
25 Polar Bear “A low poly model of a polar bear with simplified geometric shapes and flat surfaces, featuring a white body and strong build.”
26 Cow “A simple cow model with a stocky body, short legs, and small horns.”
27 Cap “A blue baseball cap.”
28 Helmet “A medieval helmet with a rounded metal shell and a faceplate.”
29 Donut “A donut with a round shape, a hole in the center, and a sugary glaze.”
30 Ice Cream “Pink ice cream with a creamy texture, served in a cone or cup.”
31 Hydrant “A fire hydrant with a cylindrical body, typically painted in bright red.”
32 Drum “A metal oil drum with a cylindrical shape, a top and bottom lid, and a rugged surface.”
33 Vase “A light purple vase.”
34 Boot “A snow boot with a thick, insulated lining, waterproof exterior, and durable sole for winter conditions.”
35 Fish “A chubby fish with a vibrant green body.”

After extensive optimization and adjustment of parame-
ters, we obtained a mapping and performed texture transfer
between two cartoon characters. We found that the learned
correspondence was inaccurate and exhibited a ”layered”
characteristic, which closely resembled the patterns discov-
ered by DenseMatcher [27]. However, this correspondence
is unsuitable for morphing and would require substantial re-
search effort to address. Therefore, we are more inclined to
pursue morphing research based on promising 3D genera-
tive models with implicit correspondence.

9. Testing Protocol and Cases
9.1. Quantitative Test Details
For the FID test, the reference images consist of 3000 sam-
ples, which were obtained by rendering 15 sets of 3D pairs
from 100 different viewpoints. The test images consist of
3000 samples, generated by each method using the same
3D pairs. The remaining quantitative metrics are obtained
from testing on the 15 pairs of data.

When evaluating the structural and semantic plausibility
of the generated images using GPT-4o, we input the results
generated by six methods on the same 3D pairs into GPT-
4o for comparison and scoring (similar to the images in Fig.
6). Meanwhile, we provide a guiding prompt that instructs
GPT-4o to engage in a step-by-step reasoning process dur-

ing the evaluation, enhancing both the interpretability and
accuracy of the assessment: ”What I am doing now is mor-
phing with textured 3D representations, the purpose is to
generate an intermediate interpolation sequence, and at the
same time require the transition from source to target to be
smooth and reasonable. Now I have six methods, where the
first row will give the source and target, and each of the re-
maining rows is a method. Columns 1-3 are the first test ex-
ample (morphing from teapot to bowl), columns 4-6 are the
second test example (morphing from polar bear to wooden
stool), and columns 7-9 are the third test example (mor-
phing from pumpkin to mushroom). Please help me score
these methods for the generated intermediate morphing re-
sults in terms of shape rationality and semantic rationality,
0 is the lowest score and 1 is the highest score, and give the
discrimination results.”

9.2. Beta Distribution

We present sampling results from various Beta distributions
for a clear comparison. When alpha < beta, the samples
are centered closer to 0 (the source object). Conversely,
when alpha > beta, the samples are more biased toward 1
(the target object). When alpha equals beta, larger values
concentrate the samples around 0.5. Empirical observations
show that the most noticeable morphing occurs near alpha =



Table 4. The raw statistics for user study (Part 1).

Teapot - Bowl Polar Bear - Stool Pumpkin - Mushroom Teddy Bear - Boot Mario - Luigi Average

STP-U↑ SEP-U↑ STP-U↑ SEP-U↑ STP-U↑ SEP-U↑ STP-U↑ SEP-U↑ STP-U↑ SEP-U↑ STP-U↑ SEP-U↑

DiffMorpher 0.25 0.20 0.13 0.33 0.60 0.50 0.75 0.40 0.70 0.30 0.49 0.35
AID 0.15 0.53 0.40 0.27 0.50 0.60 0.25 0.32 0.70 0.60 0.40 0.46

MV-Adapter 0.65 0.67 0.07 0.40 0.10 0.50 0.35 0.20 0.02 0.45 0.24 0.44
Luma 0.50 0.13 0.73 0.60 0.10 0.25 0.60 0.60 0.00 0.25 0.39 0.25

MorphFlow 0.45 0.47 0.67 0.53 0.70 0.40 0.30 0.52 0.40 0.40 0.50 0.46
Ours 1.00 1.00 0.40 0.87 1.00 0.75 0.75 0.96 1.00 1.00 0.83 0.92

Table 5. The raw statistics for user study (Part 2).

Animal Skull - Cow Car - Truck House - Church Chair - Donut Tank - Cannon Average

STP-U↑ SEP-U↑ STP-U↑ SEP-U↑ STP-U↑ SEP-U↑ STP-U↑ SEP-U↑ STP-U↑ SEP-U↑ STP-U↑ SEP-U↑

DiffMorpher 0.20 0.20 0.36 0.40 0.20 0.25 0.45 0.40 0.70 0.00 0.38 0.25
AID 0.50 0.40 0.28 0.55 0.30 0.65 0.30 0.80 0.40 0.33 0.36 0.55

MV-Adapter 0.20 0.27 0.28 0.40 0.10 0.10 0.45 0.20 0.00 0.33 0.21 0.26
Luma 0.30 0.60 0.52 0.45 0.70 0.35 0.20 0.00 0.50 0.67 0.44 0.41

MorphFlow 0.80 0.53 0.56 0.30 0.70 0.65 0.60 0.60 0.40 0.67 0.61 0.55
Ours 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98

0.5. Several strategies, such as resampling based on varia-
tion, can be employed. To ensure fairness in comparison, all
methods use morphing based on the sampling results with
alpha = beta = 5.

9.3. Prompts for Testing Cases
The strength of our method lies in its ability to perform
morphing on diverse cross-category or same-category 3D
object pairs. This capability was carefully considered dur-
ing the selection of test cases, which were primarily cate-
gorized into furniture, vehicles, plants, humanoid objects,
and animals. Moreover, our method goes beyond shape-
only morphing, as we also aim to validate its effectiveness
on diverse and richly textured color variations. As such, the
color range in our test cases is intentionally broad to ensure
comprehensive evaluation. More details about the test cases
and their corresponding prompts can be found in Tab. 3.

10. Raw Statistics of User Study

We recruited over 20 volunteers for a user study, where they
were asked to rank morphing sequences generated by six
methods for the same pairs of test samples. Presenting the
results of different methods simultaneously allows users to
clearly observe their differences, making the comparison
more fair. The 3D object pairs and results are presented
in Tab. 4 and Tab. 5.

11. Failure Cases and Analysis

Our work introduces a novel approach to classic shape
morphing by leveraging diffusion model priors to over-
come limitations imposed by small untextured datasets and
the extensive correspondence matching previously required.
However, through extensive testing, we have identified un-

(a) LoRA Fine-Tuning Failure 

(b) Quantity Issues

(c) Temporal RelationshipSource Target

Figure 7. Failure cases occur with challenging morphing pairs.

resolved issues and failure cases that will guide future re-
search.

As shown in Fig. 7, here are three common failure cases:
(1) LoRA fine-tuning failure: When fine-tuning the LoRA
model, the objects may fall outside the training data distri-
bution of the foundational 3D generation model, leading to
the LoRA model’s inability to learn correctly. (2) Quantity
issues: Due to the lack of good alignment between text and
3D data, objects that require numerical descriptions may ex-
perience morphological breakdowns during morphing due
to ambiguity. (3) Temporal relationship generation: Since
the foundational 3D generation model is trained on limited
3D data, it lacks the rich semantic understanding of 2D gen-
erative models, making it difficult to infer temporal relation-
ships, such as turning a banana into a banana peel. How-
ever, the fundamental reason lies in the lack of sufficient
training data for the foundational model, which hinders the
modeling of a semantically rich and smoothly transitioning
implicit space. However, our approach provides insights to
address these limitations and will continue to improve its
handling of these challenging pairs in the future.
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Figure 8. More cases of surface improvement (GaussianAny-
thing).
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Figure 9. More cases of surface improvement (Trellis and
3DTopia-XL).

Table 6. Quantitative ablation study of texture diffusion.

Texture Diffusion
Time Step

5 Steps 40 Steps 80 Steps

FID↓ PPL↓ PDV↓ FID↓ PPL↓ PDV↓ FID↓ PPL↓ PDV↓

Basic+AF 105.62 4.44 0.0110 112.70 4.82 0.0173 130.65 4.97 0.0168
Basic+AF+TR 9.41 3.37 0.0024 62.08 4.79 0.0120 70.39 4.80 0.0149
Basic+AF+LE 7.08 3.15 0.0009 50.70 4.42 0.0099 52.92 4.65 0.0125

Basic+AF+TR+LE 6.36 3.02 0.0001 48.17 3.95 0.0062 49.28 4.42 0.0090

12. Surface Improvement by Low-Frequency
Enhancement

As shown in Fig. 8 and Fig. 9, we compiled additional re-
sults reflecting varying levels of surface generation qual-
ity, including outputs from GaussianAnything, Trellis, and
3DTopia-XL.

13. Ablation Study of Texture Diffusion

As shown in Tab. 6, we found that 5 steps already yield good
texture interpolation, while more steps tend to cause color
distortion.
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