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In this Supplementary Material, we first provide details
regarding the training algorithm of TimeExpert in Sec-
tion 1. After that, we elaborate on the data preparation pro-
cess in Section 2. We also present more details regarding
our implementation and more experimental results in Sec-
tion 3.

1. Detailed Training Algorithm of TimeExpert

Algorithm 1 Pseudo code of TimeExpert’s MoE training
process.

Require: Training data D, gating network parameters W,
expert activation thresholds G, task activation tracker
Ay, learning rate 7).
Ensure: Optimized MoE model parameters.
1: for each training iteration do

2 for each mini-batch (x,y) ~ D do
3 Compute gating scores: s(x) = %
4 Apply task-aware gating:
5: g(x) = sign (0’ (%%At) —0(Q)
6 Select active experts: £ = {e | g(x). > 0}
7 if £ = () then
8: Assign x to least-utilized expert e, and up-
date A,
9: end if
10: Compute final MoE output: y =
ﬁ Dece 9(X)eBe(x)
11: Compute task-dependent auxiliary loss:
2
12: Acauat:>\1 Zi(zl <Z]I?jAJ - Z;(NIENJ) +
Mo T W ello
13: Compute total loss: £ = £.[24] + Loz
14: Update model parameters: W, < W, —
nVw,L
15: Update activation tracker: A <— Ac +> o1
16: end for
17: if Iteration mod Typgae = O then
18: Remove inactive experts: Eemove = {€ | Ae <
7_min}
19: Introduce new experts for unassigned task to-
kens
20: end if
21: end for

2. Data Preparation

Stage 1: Task Module Pretraining. This stage focuses on
equipping the model with fundamental multi-modal align-
ment and video-language capabilities. We employ datasets
such as Valley [10], LLaVA_Image [23], TextVR [20],
ShareGPT4Video [4], and VTG-IT [6] to establish a robust
visual-text grounding foundation.

Stage 2: MoE Pretraining. To enable dynamic expert
specialization, we introduce an MoE-based training phase
leveraging diverse video-language datasets. Four subsets
of Valley, TextVR, ShareGPT4Video, and VTG-IT are
used alongside additional datasets such as ActivityNet Cap-
tions [2], VideoChatGPT [11], InternVid [18], and Next-
QA [21]. These datasets provide extensive video-text inter-
actions, enhancing the model’s structured event reasoning
capabilities.

Stage 3: Supervised Fine-tuning. The final training stage
refines the model for downstream fine-grained video un-
derstanding. We incorporate datasets such as Moment-
10M [14], EgoQA [12], STAR [19], and LLaVA-Video-
178K [23]. This stage fine-tunes the model for precise event
localization and dense video captioning.

2.1. Data Format

The annotations can be categorized into the following four
types:

(1) General Video Understanding. General tasks include
video captioning, image captioning, and video question an-
swering, where the answer component does not contain
timestamps or scores. Following [7], we employ a sin-
gle token (sync) as a placeholder for these missing val-
ues, indicating an empty response. Datasets in this cate-
gory include LLaVA Image [23], Valley [10], TextVR [20],
ShareGPT4Video [4], VideoChatGPT [11], and Next-QA
[21].

(2) Dense Video Captioning. This task consists of times-
tamps and textual captions, where the (sync) token is used
as a placeholder for scores. Relevant datasets include
HiRESTe, [22], COIN [16], ActivityNet Captions [2],
VTG-IT-DVC [6], and InternVid [18].

(3) Moment Retrieval. Similar to Dense Video Caption-
ing, Moment Retrieval comprises timestamps and textual
captions. This task includes HIRESTgrounding [22], QuerYD
[13], DiDeMo [1], VTG-IT-MR [6], and InternVid [18].
(4) Video Highlight Detection. In this task, highlight mo-
ments are retrieved using textual queries. We employ the
VTG-IT-VHD [6] dataset for this purpose.



2.2. Data Processing

To ensure high-quality and efficient training for TimeEx-
pert, we leverage a structured data processing pipeline to
balance data diversity while maintaining task relevance.
This is crucial for video-language tasks requiring fine-
grained temporal reasoning.

Given the varying reliability of existing video-language
datasets, we employ automatic filtering to remove noisy
or low-quality samples: (1) Temporal Alignment Check:
We discard annotations with misaligned timestamps, en-
suring accurate event descriptions match the corresponding
video segments. (2) Instruction Consistency Verification:
For datasets with multiple annotation sources, we use an
LLM-based consistency check to filter ambiguous or overly
generic captions. (3) Scene Change Detection: We apply
optical flow analysis to eliminate videos with abrupt cuts
that disrupt temporal coherence in event-based tasks.

It is worth noting that many datasets in Stage 3 do not
have annotations in the style of VTG-IT. Therefore, we re-
annotated a high-quality subset using mentioned datasets.
Specifically, we employ Video-LLM-based iterative event
grouping and extrapolative rule-based timestamp refine-
ment to acquire precise video events and their correspond-
ing timestamps.

This comprehensive data processing strategy ensures
TimeExpert is trained on a well-curated, diverse, and high-
quality dataset optimized for multi-task video-language un-
derstanding.

3. More Experiments

3.1. More Implementation Details

In line with prior work [6, 7], we standardize the represen-
tation of timestamps and scores to a fixed length format,
consisting of four integer components, a decimal point, and
one fractional component. To structure the sequence, we
insert the token (sep) between consecutive timestamps or
scores and append (sync) at the end of the sequence. For
example, given the timestamp inputs [9.56, 102.84], the cor-
responding tokenized sequence is:

(0)(0)(9)(-)(5)(6){sep)(1)(0)(2)(.) (8) {4) (sync).

Moreover, we incorporate temporal information by encod-
ing each frame’s timestamps with a time encoder. After dis-
carding the (sync) and (sep) tokens, we obtain 6 time tokens
per frame, which are concatenated with the 8 compressed
visual tokens to form the final visual input. All experiments
are conducted on 2 nodes of 8 NVIDIA H100-80GB GPUs.
The hyperparameter settings are shown in Table 1.

3.2. More Experimental Results

Performance against Strong Generalist Video-LLMs. In
this experiment, we select Qwen2-VL-Instruct [17] as a rep-

resentative baseline of generalist Video-LLMs. ARIA [8] is
also included since it serves as the foundation of our MoE
decoder. We evaluate TimeExpert’s temporal reasoning ca-
pability using two VTG-specific benchmarks, TempCom-
pass [9] and TemporalBench [3], while also assessing its
general video understanding a ability through general video
question-answering benchmarks like VideoMME [5]. For
VideoMME [5], our model matches ARIA’s performance,
indicating that specializing for time-sensitive tasks does
not degrade, and even improve general video understand-
ing abilities. For TempCompass [9], which assesses fine-
grained temporal reasoning, TimeExpert improves the sub-
task score compared to ARIA, with notable gains in Action
(+4.52) and Speed (+4.22), reinforcing its ability to localize
dynamic events with precision. For TemporalBench [3], our
model outperforms all baselines, particularly in Captioning,
confirming its strong VTG-specific capabilities. These re-
sults demonstrate the effectiveness of our MoE-based struc-
tured modeling, which enhances both general video under-
standing and task-specific VTG performance.

Qualitative Comparisons. We compare the proposed
TimeExpert with three state-of-the-art methods: TimeChat
[15] and TRACE [7], which are VTG-specific Video-
LLMs, as well as Qwen2-VL-7B-Instruct, a general-
purpose Video-LLM. As illustrated in Figure 1, Time-
Expert produces a highly precise prediction (62.05s to
65.98s), closely aligning with the ground truth. In con-
trast, Qwen2-VL, a general-purpose Video-LLM, fails to
output structured timestamps and instead generates an
open-ended textual response that does not directly pro-
vide a temporal grounding for the query. TRACE, iden-
tifies part of the relevant event but generates a signifi-
cantly earlier starting timestamp (54.28s), leading to in-
accurate localization. TimeChat, while correctly identi-
fying the dosa batter as the relevant substance, misinter-
prets an earlier step in the preparation process as the tar-
get action, leading to an incorrect time span (24.78s to
44.70s).
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Training Configuration ‘
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Table 1. Summary of hyperparameters. This table includes Left: Model Configuration, Middle: Training Configuration, and Right:
Dataset Configuration.
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(b) TempCompass [9]

(c) TemporalBench [3]

Table 2. Quantitative Comparison of TimeExpert against Strong Generalist Video-LLMs across General Video Understanding
Benchmarks and VTG-specific Video Benchmarks. The best results are in bold. Some second-best results are marked with underline.
For brevity, we display only a subset of TempCompass.
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