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Supplementary Material

A. Details on Preliminaries
Here, we briefly review and supplement the preliminary
knowledge from Sec. 3 to help our readers better under-
stand the various tasks involved in this paper.

Fine-tuning Customization (Personalization). Fine-
tuning methods aim to inject specific concepts into the pre-
trained SD for customization. Among them, DreamBooth
(DB) [14] is widely studied for anti-customization. This ap-
proach not only minimizes Lldm in few-shot scenarios but
also incorporates a prior-preservation term to retain benefi-
cial prior knowledge, thus mitigating forgetting. Its training
objective can be formalized as:

Ldb(x0; θc) = Lldm(x0; θc)

+ λ Eϵ′,t′∥ϵ′ − ϵθc(z
pr
t′ , t

′, τθc(y
pr))∥22︸ ︷︷ ︸

Class-Specific Prior Preservation Loss

, (14)

where the class prior image xpr is generated by the pre-
trained model with class prompt ypr, and zpr0 = E(xpr)
diffuses at timestep t′ to form zprt′ . In Ldb, the loss term
Lldm employs instance prompts y of the form “a photo of
[V][class noun],” where [V] acts as an identifier describing
the target concept.

LoRA [4] is proposed to accelerate the optimization of
large-scale pretrained models. It freezes the pretrained
weights and injects trainable rank decomposition matrices
into each layer, greatly reducing the number of trainable
parameters for downstream tasks:

W ′ = W0 +A ·B, (15)

where W ′ and W0 are fine-tuned and original weights,
respectively, while A ∈ Rm×r and B ∈ Rr×n are
low-rank matrices with rank r ≪ min(m,n). LoRA can
be used in conjunction with DB for efficient SD fine-tuning.

Adversarial Attack. In attacks against classifiers, white-
box methods like I-FGSM [6, 7] or PGD [10] are commonly
used, which can be formalized as:

xadv
t+1 = Πx0,η

(
xadv
t + α · sgn

(
∇xadv

t
L(xadv

t , y; θ)
))

,

(16)
where Πx0,η(·) restricts inputs within the l∞-ball of radius
η around x0, sgn(·) represents the sign function, and α
is the learning rate. L(xadv

t , y; θ) is the loss used by the
classifier with parameters θ, where xadv

t is the adversarial

sample at the t-th PGD step and y is the corresponding
ground truth label. In brief, PGD iteratively finds the most
adversarial noises for the model with parameters θ by
maximizing the loss via gradient ascent.

Anti-customization. We explain the intuition behind the
simplification that transforms our original maximizing ob-
jective from min

θc
ExLldm(x0 + δ; θc) to Lldm(x0 + δ; θc)

as mentioned above. The key lies in the relationship be-
tween the model’s training data x (of Ex) and the adversar-
ial data x0 + δadv . For optimal performance, the training
set should encompass adequately trained adversarial sam-
ples. However, this creates a bootstrap paradox: fine-tuned
θc is needed for optimal δadv while δadv is needed for opti-
mal θc, which is why surrogate models fine-tuned on clean
data are frequently employed for simplification.

In the context of fine-tuning methods like Textual
Inversion [3], which make no change to the internal
parameters of SD, such an issue exists no more in practice.
For DB (full fine-tuning) and LoRA (PEFT), simply using
a model fine-tuned on clean images as a surrogate leads to
Fully-trained Surrogate Model Guidance (FSMG) formal-
ized in Anti-DB [19]. A more promising alternative, also
proposed by Anti-DB, is to iteratively introduce insufficient
adversarial samples, generated at different PGD steps, into
the surrogate model alongside clean images. This approach
is referred to as Alternating Surrogate and Perturbation
Learning (ASPL).

Purification. In its original paper, DiffPure [12] is intro-
duced via Stochastic Differential Equation (SDE). Since we
use the specialized DDPM-based purification model, and
considering that SD is commonly implemented discretely,
the introduction of diffusion-based purification in this pa-
per is also written in the DDPM form. We present the
more generalized SDE form from the original DiffPure here
for both quick reference and rigor. For a Variance Pre-
serving SDE (VP-SDE) where drift and diffusion coeffi-
cient are respectively defined as f(x, t) := −β(t)

2 x and
g(t) :=

√
β(t), we first diffuse adversarial xadv with a

fixed timestep tp ∈ [0, 1] via:

x(tp) =
√
α(tp)xadv +

√
1− α(tp)ϵ, (17)

where α(t) := e−
∫ t
0
β(s)ds, then we solve the reverse-time

SDE to get the purified sample with an SDE solver sdeint:

Pure(xadv) = sdeint(x(tp), frev, grev, w, t
p, 0; θp), (18)



where sdeint takes in six inputs: initial value x(tp), drift
coefficient frev(x, t) := −β(t)

2 [x+2sθp(x, t)], diffusion co-
efficient grev(t) :=

√
β(t), Wiener process w, initial time

tp, and end time 0. In the discrete case, this whole purifica-
tion process corresponds to the specialized DDPMs.

B. Details on Analysis
B.1. More Explanation on Overall Formulation
Due to the deepening of the computational graph during
iterative purification denoising, full-gradient adaptive at-
tacks lead to O(N) memory cost and may cause vanish-
ing/exploding gradients. For a 2GB 256×256 unconditional
DDPM purification model, fully tracking its training loss
after only 5 consecutive denoising samplings requires up
to 25GB memory overhead. For differentiability, DiffPure
proposes the adjoint method to calculate full gradients of
the reverse SDE with O(1) memory cost. However, this
method of solving the augmented SDE does not reduce the
time complexity. Backward Path Differentiable Approxi-
mation (BPDA) [1] is also a common approach, but the truly
effective surrogate is hard to find.

Is it entirely infeasible to use full-gradient adaptive at-
tacks? [22] mentions such a method for anti-customization,
where DDIM [17] sampling strategy is utilized to ensure
memory usage remains within an acceptable range. How-
ever, they report that this adaptive attack is not effective. To
demonstrate the instability of purification diffusion models
as probabilistic models, we set α = 0.005, η = 16

255 , and
perform a 100-step PGD attack on Lddpm. The resolution of
the input images is 256×256. Subsequently, both the clean
and the adversarial sample obtained from the attack are pu-
rified using DiffPure with tp = 50 and tp = 100, generating
four sets of images, each containing 100 samples. The dis-
tributions of these sets are visualized using t-SNE [18] with
perplexity set to 10, and the results are presented in Fig. 2.
The convergence of the purified clean and adversarial sam-
ples motivates us to turn to the alternative by Eq. (6).

B.2. Experimental Details on the Reason Analysis
Reason 1: Lack of Vulnerable Components. Firstly, we
modify Anti-DB’s ASPL method to conduct PGD attacks
directly in the latent space. We provide a more comprehen-
sive experimental result here in Fig. 10, with the CLIP text
encoder [13] taken into consideration. We set α = 0.005,
ηz = 16

255 , and perform a (20×5)-step PGD attack on Lldm.
Fine-tuning steps per 5 PGD steps are set to 3. In the ASPL
attack, we employ two configurations: one with a trainable
text encoder (Latent-ASPL, trainable text encoder) and one
with a frozen text encoder (Latent-ASPL, frozen text en-
coder), and the adversarial examples shown in Fig. 3 are
obtained via the former. Actually, these two different con-
figurations do not result in significant differences, whether

in the generated adversarial samples or in the outputs ob-
tained after fine-tuning SD on the adversarial samples.

To avoid introducing additional noise during VAE de-
coding and to maintain consistency in the number of chan-
nels, we directly save the adversarial latents in “.pt” format
and use them to replace the corresponding instance inputs
in the DreamBooth training process.

During customization, we fine-tune SD v2.1 via Dream-
Booth on these two kinds of adversarial samples. We also
choose to either train or freeze the text encoder during fine-
tuning. When jointly training the text encoder, we set the
learning rate to 5e− 7, and when freezing the text encoder,
we set it to 5e − 6 to ensure the capture of the target con-
cept, with 500 steps of training for both fine-tuning config-
urations. The training instance prompt is “a photo of sks
person”, the class prompt is “a photo of person”, and the
inference prompt is “a photo of sks person”. The training
batch size is 2, with a prior loss weight of 1.0. The results
are shown in Fig. 10.

Also, we directly attack Lddpm using 200 randomly
selected images in our datasets, resized to 256×256. We set
α = 0.005, η = 16

255 , and perform a 150-step PGD attack,
with Monte-Carlo sampled timesteps limited in [1, 100].
Subsequently, the adversarial images and clean images are
both fed into the UNet with time condition inputs ranging
from 1 to 100. The purification model we use consists of 18
downsampling blocks, 1 middle block, and 18 upsampling
blocks. We record MSE between the intermediate outputs
of adversarial and clean images block by block under
different time conditions. The average values across 200
images are computed, and the final results are presented
in Fig. 4. It can be observed that, due to the increasing
coefficient

√
1− αt, the differences between clean and

adversarial images grow with longer timesteps.

Reason 2: Frozen Parameters with Benign Priors.
The adversarial samples in Fig. 5 are generated using
the Lldm-attack against SD v1.5. The configuration for
generating protective perturbation is largely consistent with
the setup used in the experiments above, conducted in the
latent space. We set α = 0.005, η = 16

255 , and perform a
100-step PGD attack. During editing, we employ MasaCtrl
[2] combined with a pretrained T2I-Adapter [11], with the
condition type set to “sketch.” The significant attenuation
of artifacts demonstrates that this direct attack on training
objectives is not fully applicable to training-free tasks.

Reason 3: Fixed High Timestep Denoising. Perhaps the
statement in Sec. 4.2.3, “the purification process can be
viewed as a generation process where high-timestep denois-
ing is fixed,” is not sufficiently direct. To offer a more in-
tuitive illustration of this process, we present a simple dia-
gram. As depicted in Fig. 11, attacks on generation span the
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Figure 10. ASPL attacks [19] against SD in the latent space. In the ASPL attack, two configurations are used: trainable/frozen text encoder,
corresponding to the two rows in the figure. Similarly, in the DreamBooth fine-tuning, the trainable/frozen text encoder configurations are
also employed, corresponding to the last two columns.
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Figure 11. Why “the purification process can be viewed as a gen-
eration process where high-timestep denoising is fixed.”

entire range from T (typically set to 1000) to 0. In contrast,
attacks on purification are limited to a much smaller range,
from tp to 0, where the low-frequency structural informa-
tion fixed during the “Fixed Higher Timestep Denoising”
stage cannot be effectively altered.

C. Experimental Details
Here, we provide more configuration details used for the
quantitative experimental evaluation. In Sec. 6.2 and Sec.
6.3, we use the same setup for all perturbation methods. In
PGD attacks, we normalize images to [−1, 1]. Within this
range, the noise budget η is set to 16/255, the learning rate
α is set to 5e−3, and the total PGD steps are set to 100 (20 ×

5 steps for Anti-DB and SimAC). In Sec. 6.5, we evaluate
the perceptual consistency of different perturbation methods
with pretrained AlexNet[5]/VGG[16].

The purification and fine-tuning settings are also kept
consistent. In Sec. 6.2 and Sec. 6.3, we use GrIDPure
[22] for purification, applying 2 rounds of 20 iterations with
tp = 10, γ = 0.1 to approximate convergence of the purifi-
cation effect. In Sec. 6.4, we use a finer-grained purifi-
cation configuration to explore when the purification effect
approximately reaches convergence. Specifically, we apply
4 rounds of 20 iterations with tp = 10, γ = 0.1, on the ad-
versarial images obtained from Anti-DB and AntiPure. To-
tally, Tab. 3 uses 4 rounds × 10 iters, where P(Iter=30)-C
equals 3×10, and so on. GrIDPure mitigates image degrada-
tion caused by purification via residual connections, allow-
ing 4×10 to rely more on intermediate results while main-
taining the same computational cost as 2×20. This leads to
inconsistency between the results in Tab. 1 and the results
of P(Iter=40)-C in Tab. 3. But overall, the computational
overhead incurred by these two settings during the purifica-
tion process is the same. Here, 20-iter is the default setting
of GrIDPure.

For customization, in Sec. 6.2, we fine-tune the UNet
and the text encoder jointly by DreamBooth [14] with batch
size of 2 and learning rate of 5e−7 for 500 training steps.
The training instance prompt is “a photo of sks person”,
the class prompt is “a photo of person”, and the inference
prompt is “a photo of sks person”. We also set the prior loss
weight to 1.0. In Sec. 6.3, we apply LoRA [4] with the same
DreamBooth settings but set the learning rate to 5e−5. The
rank is set to 4. For evaluation, 30 PNG images per ID are
generated, which is also consistent with the configurations



Dataset Objective FID↑ ISM↓ (FDFR) BRISQUE↑

CelebA-HQ

Lddpm 69.06 0.6293 (0.09) 42.45

Lddpm + Lfre 65.69 0.6253 (0.08) 42.84

Lddpm + Lerr−t 74.42 0.6489 (0.10) 37.01

AntiPure (Ours) 81.15 0.6112 (0.10) 43.60

VGGFace2

Lddpm 76.32 0.5958 (0.07) 39.42

Lddpm + Lfre 74.90 0.5644 (0.07) 45.57

Lddpm + Lerr−t 76.75 0.5901 (0.06) 40.75

AntiPure (Ours) 90.77 0.5475 (0.05) 46.01

Table 6. Ablation Study on DreamBooth’s [14] output qual-
ity for different AntiPure guidance following the Purification-
Customization (P-C) workflow.

used in Anti-DB and SimAC.

D. More Experimental Results

D.1. Ablation Study
Our proposed AntiPure incorporates two kinds of additional
guidance to address the inherent challenges of the anti-
purification task: 1) Patch-wise Frequency Guidance and
2) Erroneous Timestep Guidance. In the ablation study, we
gradually remove this guidance to validate the effectiveness
of our method.

We use the same attack/purification/customization ex-
perimental configurations in Sec. 6.2 and Sec. 6.3 to per-
form the corresponding DreamBooth and LoRA fine-tuning
on CelebA-HQ and VGGFace2, but with different attack
targets. Specifically, our attack targets include: 1) Lddpm,
2) Lddpm + Lfre, 3) Lddpm + Lerr−t, and we compare
these results with the full AntiPure, i.e., 4) Lddpm+Lfre+
Lerr−t. The DreamBooth fine-tuning results are shown in
Tab. 6, and the LoRA results are shown in Tab. 7.

It is evident that AntiPure, which combines both types
of guidance, achieves the best overall performance across
various metrics, datasets, and fine-tuning methods, result-
ing in the most significant output distortion. This repre-
sents a clear improvement over the original Lddpm-based
attack. Additionally, it can be observed that among the sin-
gle guidance methods, Lfre is more effective than Lerr−t.
In fact, using Lerr−t for extra guidance alone shows limited
impact. However, it helps confuse the model across differ-
ent time steps, thereby disrupting the frequency characteris-
tics of the predicted noise, providing a better foundation for
Lfre guidance. This is particularly evident in FID, where
AntiPure sees an obvious improvement when both types of
guidance are combined.

In other words, the combination of these two guidance
types is not merely an additive process but achieves a syn-
ergistic “1 + 1 > 2” effect. Actually, the timestep inputs of
the diffusion model’s UNet can affect the frequency repre-

Dataset Objective FID↑ ISM↓ (FDFR) BRISQUE↑

CelebA-HQ

Lddpm 93.79 0.6176 (0.05) 42.19

Lddpm + Lfre 81.32 0.5848 (0.05) 42.24

Lddpm + Lerr−t 92.63 0.6177 (0.09) 43.22

AntiPure (Ours) 109.63 0.5839 (0.07) 40.01

VGGFace2

Lddpm 93.10 0.5859 (0.08) 61.79

Lddpm + Lfre 110.87 0.5556 (0.06) 66.01

Lddpm + Lerr−t 102.24 0.5717 (0.06) 61.10

AntiPure (Ours) 127.67 0.5428 (0.04) 69.97

Table 7. Ablation Study on LoRA’s [4] output quality for different
AntiPure guidance following the Purification-Customization (P-C)
workflow.

Dataset Transformation FID↑ ISM↓ (FDFR) BRISQUE↑

VGGFace2

Crop-Scale 152.47 0.4805 (0.34) 53.60

Rotation 92.00 0.5550 (0.05) 45.14

None (Ours) 90.77 0.5475 (0.05) 46.01

Table 8. Comparison of DreamBooth’s [14] output quality on VG-
GFace2 for different transformations on AntiPure’s outputs.

sentation of the predicted noise, allowing Lerr−t to be in-
terpreted on the frequency domain like Lfre. With both in-
volved, the high-frequency components intensified by Lfre

are primarily induced by erroneous high timesteps rather
than real ones. Thus, the introduction of Lerr−t can indi-
rectly enhance Lfre itself, and vice versa.

D.2. Transformation Robustness

As suggested by the reviewer, we apply Crop-Scale (Center-
Crop ×3/4 side length) and Rotation (randomly [0◦, 15◦])
to anti-purification samples created by AntiPure, ensuring
that the same transformations are applied to the original
ones for fair evaluation. As shown in Tab. 8, AntiPure
demonstrates robustness to rotation, while crop-scale am-
plifies the artifacts, leading to significantly improved per-
formance.

D.3. More Baselines

As suggested by the reviewer, we include PhotoGuard [15]
and CAAT [21] for additional comparison. We adopt the
img2img attack pipeline for PhotoGuard, as it resembles
purification more than the inpainting pipeline. However,
as shown in Tab. 9, PhotoGuard’s perturbations tend to be
easily purified due to their blurred boundaries. In contrast,
CAAT’s perturbation closely resembles that of Anti-DB,
leading to comparable robust performance.



Dataset Perturbation FID↑ ISM↓ (FDFR) BRISQUE↑

VGGFace2

PhotoGuard [15] 72.25 0.6061 (0.07) 43.07

CAAT [21] 89.07 0.5854 (0.07) 38.21

AntiPure (Ours) 90.77 0.5475 (0.05) 46.01

Table 9. Comparison with additional baselines on VGGFace2.

Dataset λ1 λ2 terr FID↑ ISM↓ (FDFR) BRISQUE↑

VGGFace2

0.25 0.75 999 96.33 0.5431 (0.06) 41.50

0.50 0.50 700 90.50 0.5490 (0.04) 48.34

0.75 0.25 999 87.81 0.5586 (0.05) 43.02

0.50 0.50 999 90.77 0.5475 (0.05) 46.01

Table 10. DreamBooth’s [14] output quality on VGGFace2 for
different hyperparameter configurations.

D.4. Hyperparameter Sensitivity
Originally, the selection of λ1 and λ2 was based on balanc-
ing the magnitude of loss components, while terr was cho-
sen to be as large as possible to maximize its effect. Here,
as the reviewer suggested, we conduct a simple grid search
over these three hyperparameters. As shown in Tab. 10, dif-
ferent metrics exhibit varying degrees of sensitivity to each
parameter. Notably, the impact of terr is relatively smaller
compared to those of λs, while the ISM—the primary met-
ric for identity preservation—remains largely stable across
all settings. This suggests that AntiPure exhibits a certain
degree of robustness with respect to its hyperparameter con-
figurations.

D.5. Black-Box Performance
All previous experiments are conducted on SD v2.1, as rec-
ommended by Anti-DB and SimAC. However, AdvDM and
Mist only support SD v1.x. We note that after sufficient pu-
rification, the effects of these perturbation methods almost
completely disappear, making the distinction between SD
versions insignificant.

To evaluate the performance of perturbation methods un-
der a black-box scenario with mismatched models, and to
ensure an absolutely fair SD version for all methods, we
fine-tune SD v1.5 on the purified adversarial images from
VGGFace2. The results are shown in Tab. 11. The similar
performance observed preliminarily supports our hypothe-
sis that “SD versions have negligible influence.” Also, An-
tiPure still demonstrates the best overall performance.

D.6. More visualization
We provide more visualization results in Figs. 12 to 15 for
qualitative evaluation. Please refer to the captions of each
figure for detailed explanations. We strongly recommend
zooming in on the following visualizations to better iden-

Fine-tuning Perturbation FID↑ ISM↓ (FDFR) BRISQUE↑

DreamBooth

AdvDM [9] 82.10 0.5798 (0.06) 26.99

Mist [8] 77.33 0.5797 (0.04) 32.58

Anti-DB [19] 83.95 0.5686 (0.06) 27.68

SimAC [20] 76.73 0.5762 (0.05) 26.44

AntiPure (Ours) 89.33 0.5165 (0.03) 62.88

LoRA

AdvDM [9] 106.48 0.5697 (0.05) 44.96

Mist [8] 91.33 0.5731 (0.06) 55.27

Anti-DB [19] 115.34 0.5591 (0.05) 46.11

SimAC [20] 92.57 0.5622 (0.05) 45.41

AntiPure (Ours) 112.90 0.5101 (0.05) 74.82

Table 11. Comparison of DreamBooth/LoRA’s [14] Stable Diffu-
sion v1.5 output quality on VGGFace2 for different perturbation
methods following the P-C workflow.

tify these artifacts.
It can be observed that the effects of other protective

perturbation methods almost entirely vanish after sufficient
purification. However, AntiPure ensures the presence of
detectable artifacts, which are concentrated in the human
facial regions (excluding the eyes). At lower levels of se-
mantic distortion, these artifacts appear as unnatural high-
frequency speckled regions, while more prominent artifacts
manifest as patches of abnormal textures.

Furthermore, the effects of different perturbation meth-
ods on human visual perception (iter = 0, i.e., no purifica-
tion) in Figs. 14 and 15 are also consistent with the LPIPS
comparison in Tab. 4. Even under the same noise budget,
Anti-DB and CAAT perturbations are more noticeable, of-
ten exhibiting blocky color artifacts. AntiPure, however,
relies on frequency-domain modulation and generates sam-
ples visually closer to the original image.
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Figure 12. Comparison of DreamBooth’s outputs on CelebA-HQ for different perturbation methods following the Purification-
Customization (P-C) workflow.



AdvDM Mist Anti-DB SimAC Ours

Figure 13. Comparison of DreamBooth’s outputs on VGGFace2 for different perturbation methods following the Purification-
Customization (P-C) workflow.
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Figure 14. Comparison of GrIDPure’s outputs at different iterations on VGGFace2 for different perturbation methods. Here Iter=0 means
no purification is adopted after adversarial samples are generated.
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Figure 15. Comparison of GrIDPure’s outputs at different iterations on VGGFace2 for different perturbation methods. Here Iter=0 means
no purification is adopted after adversarial samples are generated.
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