Verbalized Representation Learning for Interpretable Few-Shot Generalization

Supplementary Material

A. Implementation Details

In this section, we outline the detailed prompt template used
to generate verbalized features, and the hyperparameters
used throughout the experiment. Since the proposed verbal-
ized representation learning (VRL) only involves inference
using Vision Language Models, we are able to significantly
improve the inference speed and the GPU memory usage by
leveraging existing optimization techniques. Specifically,
we utilize Sglang [53], which introduces optimizations such
as RadixAttention for KV cache reuse to accelerate infer-
ence. In our experiments, we use LLaVA-OneVision as the
VLM, since it is able to interleave multiple images in the
prompt. For GPU usage, the 7B model requires 2 A6000
GPUs, each with 48GB of RAM, while the 72B model de-
mands 8 A6000 GPUs to host the model.

A.1. Prompt Templates in VRL

We report the prompt template used to generate verbal-
ized features capturing inter-class difference (yq;7r) and
intra-class commonality (Ycomm ) in Table 6. Notably, since
the generated descriptions often include multiple features,
we utilize the same VLM again to parse the descriptions
into a question and the corresponding answers, as shown in
Table 7. This approach enables us to disentangle the various
features captured by the VLMs, making them easier to map
to scalar vectors. Consequently, to extract the representa-
tion of a given image using the learned verbalized features,
we prompt the VLM to determine whether the described
features are present in the image, as discussed in Sec. 3.1.
The prompt used for this stage is detailed in Table 8. For
inter-class difference features (yg4; ), we assign a value of
0 if the model identifies the image as more similar to class
1 for the given attribute, and 1 if it is more similar to class
2. For intra-class commonality features (Ycomm ), We assign
a value of 1 if the model responds with ‘Yes’ and O if it
responds with ‘No’.

A.2. Time Complexity

Given a classification task with C' classes and /N-shot ex-
amples per class, we are able to construct C§' x C¥ and
C x O pairs for inter-class and intra-class images, respec-
tively. For example, with 5 classes and 10 images per class,
we can sample 450 and 100 distinct pairs for inter-class
and intra-class cases. In addition, even with the same im-
age pairs, perform sampling during VLM’s generation can
also produce diverse verbalized features. Theoretically, to
learn a set of verbalized features, the time complexity is
O - CF - CY) for yairr and O(b - C - CN) for Yeomm,
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g diff = "Identify the most distinctive
feature that can be used to distinguish
the species between image 1 and image 2."
g _comm = "List the key features that not only
shared by the species in both images but
also make this species distinct from
others. Focus on unique or specific
characteristics, such as detailed patterns
in the arrangement, textures, color
variations, or specific forms of growth on
surfaces. Provide each feature as a
distinct bullet point, capturing the
essence of what makes this species
visually identifiable."

Table 6. Prompt template for generating verbalized features. Note
that gq; s s is the text query used to generate inter-class difference
feature yq; sy and gcomm is for intra-class commonality Ycomm.

where b represents the number of samples generated by the
VLM for the same image pair. While it may sound intimi-
dating, empirically, we find that setting b to 1 and perform
verbalized representation learning on C' x N pairs for both
inter and intra cases are sufficient to learn a diverse robust
features set. Specifically, for a task involving 5 classes with
10 images per class, this requires only 50 inferences, which
can be completed in under 30 seconds. After obtaining the
verbalized features, each training image must be mapped
into numeric representations based on the learned features
Yaiff and Yeomm. Given that there are C' x N images, and




system_prompt (y_diff) = """

I have a series of descriptions that I would like to convert into classification questions. For each
description, respond in JSON format, which includes a question and provides specific labels for
Class 1 and Class 2 based on the key distinguishing feature mentioned in the description.

\nExample description: The most distinctive feature that can be used to distinguish class 1 and

class 2 is the type of fungus present. class 1 has a bright yellow, fuzzy fungus with a round
shape, while class 2 has bright yellow, delicate flower-like structures growing from a dark gray

tree branch.

\nExample response: {\"question\": \"What type of fungus is present?\", \"class_1\":
, fuzzy fungus with a round shape\", \"class_2\":

\"bright yellow
\"bright yellow, delicate flower-like

structures growing from a dark gray tree branch\"}

nnn

system_prompt (y_comm) = """

I have a series of descriptions that I would like to convert into a list of structured sentences,
where each item describes one specific feature of the species. For each description, response in

a list format.

\nExample description: The berry in both images exhibits several distinctive characteristics that
set it apart from other berry species:\n\n- »*Flower Structurex*: The flowers are small, with

five petals each, and they form in clusters.
pink or white color.\n- *xLeaf Arrangementxsx:

The petals are delicate and appear to be a soft
The leaves are arranged in an opposite or

alternate pattern, with each leaf having a distinct shape that is often described as oval with a
pointed tip.\n- xxLeaf Texturex*: The leaves have a velvety texture, which is unique to this
species.\n- xxStem and Branchesx*: The stems and branches have small thorns or are spiny, which
can be a defense mechanism against herbivores.\n- x*xFoliage Color*x: The foliage is a vibrant
green, indicating a healthy, thriving plant.\n- *xBerriesx*: The berries are small, round, and
appear to be a dark red or purple color, typical of many berry species.\n- x*Growth Environment
«%: Both images show the plant growing in a rocky, perhaps alpine environment, which suggests it
has adapted to grow in challenging conditions.\n—- *xUnique Shape**: The leaves and flowers have
a unique shape, with the leaves having a slightly wavy edge and the flowers having a bell-

shaped form.

\nExample response: [\"Its flowers are small, with five petals each, and they form in clusters. The
petals are delicate and appear to be a soft pink or white color.\",\"The leaves are arranged in
an opposite or alternate pattern, with each leaf having a distinct shape that is often described

as oval with a pointed tip.\",\"The leaves have a velvety texture, which is unique to this
species.\",\"The stems and branches have small thorns or are spiny, which can be a defense
mechanism against herbivores.\",\"The foliage is a vibrant green, indicating a healthy, thriving
plant.\",\"The berries are small, round, and appear to be a dark red or purple color, typical
of many berry species.\",\"The plant growing in a rocky, perhaps alpine environment, which
suggests it has adapted to grow in challenging conditions.\",\"The leaves and flowers have a
unique shape, with the leaves having a slightly wavy edge and the flowers having a bell-shaped

form.\"]

nnn

user_prompt = f"Now, convert this description:
format for the response. Response:"

{y_diff/y_comm}" + " Please follow the same JSON

Table 7. Given the verbalized feature (yq4; s and Ycomm), we use the VLM to convert the description into a question and the corresponding

answer for each class.

each image is evaluated against C' x N descriptions, the
computational complexity of this stage is O(C? - N?). Em-
pirically, for a task with 5 classes and 10 images, our ap-
proach requires less than 30 seconds on a single A6000 to
extract verbalized features. In contrast, LLM-Mutate [12]
based on text-based LLM sampling could take 22 hours as
the generated features often lack visual grounding, resulting
in slower convergence on discriminative features.

It is worth noting that to accelerate the feature mapping
process, we can replace generative VLMs like LLaVA with
encoder models like CLIP to perform similarity-based fea-

ture mapping, as discussed in Sec. 3.1. Since we can per-
form similarity computation in a two-dimensional batch-
wise operation, where one dimension encapsulates all the
images while the other contains all the verbalized features.
As a result, the time complexity is reduced to O(1), which
finishes in seconds, albeit with a slight trade-off in perfor-
mance, as demonstrated in Table 5.

A.3. Hyperparameters

In this subsection, we outline the specific parameters used
to construct the visual classifiers. For implementation, we




user_prompt (y_diff) = f"Given the following
image, classify it based on the provided
criteria:

\nCriteria (Question): {question}

\nClass 1: {class_1_ans}

\nClass 2: {class_2_ans}

\nPlease response with \"Class 1\" or \"Class
2\"

user_prompt (y_comm) = f"Examine the given
image and determine if it matches the
features described by the following
criteria: {question). Answer only with YES
or NO."
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"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64, {

image}"
I
}I
{
"type": "text",
"text": user_prompt,

}

Table 8. Prompt template used to map verbalized feature (yqy s,
Yecomm ) to numeric representations (Fy; ¢, Feomm)-

utilized the scikit—learn [37] package. We use the de-
fault parameters for all classifiers. Since the primary results
are based on logistic regression and multi-layer perceptron
(MLP) classifiers, we provide the detailed parameters for
these here and refer readers to the official scikit-learn
documentation for details on other classifiers. For logistic
regression, regularization was applied using the ‘12’ norm
via the penalty parameter. The solver was ‘lbfgs’, suitable
for multiclass problems, and the regularization strength was
controlled by C, set to 1.0. Optimization stopping criteria
were determined by ‘tol” with the default value of 0.0001.

For MLP classifier, the network has a single hidden layer
with 100 neurons and uses the ReLU activation function.
Optimization is handled by the Adam solver with a learn-
ing rate of 0.001 and an L2 regularization term controlled
by alpha=0.0001. The model trains for a maximum of 200
iterations with a batch size set automatically, which is them-
inimum of 200 and the number of training samples. Early
stopping is disabled and the tolerance for optimization con-
vergence is 0.0001.
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Table 9. Accuracy (%) when incorporating feature vectors learned
from different methods. Fy;rs and Feomm denote the difference
and commonality feature vectors learned from VRL. CLIP and
DINO refer to the image features encoded by CLIP and DINO
visual encoder, respectively. All results are reported using the
ensemble of the best-performing classifier combinations. Specifi-
cally, Figi t f, Feomm, and DINO are using logistic regression while
CLIP features are classified by MLP classifier.

B. Additional Analysis

B.1. Feature Fusion with existing visual encoders

Intuitively, verbalized representation learning can be
viewed as a fine-tuning process where we develop features
specifically tailored to our few-shot data, but without re-
quiring gradient update steps. To validate this perspective,
we investigate whether the learned verbalized features can
enhance the performance of pretrained visual encoders.

Table 9 presents the results of combining difference
(Fyifr) and commonality (Fiomm) features with features
extracted by pre-trained visual encoders (CLIP and DINO).
These features are incorporated via an ensemble approach,
where each feature is used to train a separate classifier, and
the final prediction is determined by averaging the predic-
tion logits from all classifiers.

From the table, we observe that when features predict in-
dividually, the performance hovers around 60%, with Fy; ff
yielding the highest accuracy among the standalone fea-
tures. When features are combined, significant performance
improvements are achieved. Specifically, adding both ver-
balized features (Fy; sy and Fropmm) to CLIP features leads
to a notable accuracy increase of 13.26%, while a similar
12.8% improvement is observed when combining these fea-
tures with DINO.

Finally, combining all four features—Fy;t¢, Feomm.
CLIP, and DINO-results in a peak performance of 79.92%.
This validates the effectiveness of integrating verbalized
features with pre-trained visual embeddings, demonstrat-
ing that verbalized representation learning provides com-
plementary, task-specific refinements that significantly en-
hance model performance in few-shot learning scenarios.

B.2. Ablation Study

We present the complete ablation study of our method in
Table 10, analyzing the performance across several dimen-



Size F.T. F.M. LR RF SVM kNN NB DT GB MLP
7b yaifr  LLaVA 52.73 49.33 47.27 45.80 50.20 40.07 47.33 51.73
7b Yeomm  LLaVA 53.27 51.27 51.33 45.80 53.53 40.07 43.33 50.87
7b both LLaVA 62.06 56.00 51.40 51.20 52.06 37.80 39.60 55.80
7b Ydif f CLIP 57.07 55.13 48.47 46.33 47.53 43.20 45.60 52.73
7b Yeomm  CLIP 46.53 50.47 45.53 43.40 19.33 38.80 42.00 56.67
7b both CLIP 48.07 49.47 45.53 43.40 21.73 38.40 41.93 58.87
72b  yairp  LLaVA 65.27 64.93 57.07 56.07 53.53 45.13 53.60 62.53
72b  Yeomm LLaVA 58.33 58.07 53.60 51.47 52.20 38.73 48.47 58.33
72b  both LLaVA 67.40 64.87 58.93 54.47 55.33 41.73 44.67 66.00
72b  Yairy CLIP 61.07 57.13 54.07 47.00 53.60 42.60 46.13 57.20
726 Yeomm CLIP 45.87 50.13 47.80 44.33 19.33 40.47 35.87 53.73
72b  both CLIP 53.67 52.80 50.40 44.73 19.33 42.93 40.93 60.60

Table 10. Comparison of classification accuracy (%) across different ablated methods for fine-grained classification on iNaturalist. Note
that F.T. indicates the type of the verbalized features and F.M. refers to the model used to perform feature mapping. For different classifiers,
LR denotes Logistic Regression, RF for Random forest, SVM for Support Vector Machine, kNN for k nearest neighbor, NB for Naive
Bayes, DT for decision tree, GB for gradient boosting and MLP for multi-layer perceptron classifier.

sions. Specifically, we evaluate our model using two dif-
ferent sizes (7B and 72B), the impact of distinct verbalized
features (ya; r f and Ycomm ), and the effect of using different
feature mapping models (LLaVA or CLIP). Additionally,
we examine the effectiveness of various classifiers, includ-
ing logistic regression (LR), random forest (RF), support
vector machine (SVM), k-nearest neighbor (kNN), naive
Bayes (NB), decision tree (DT), gradient boosting (GB),
and multi-layer perceptron (MLP). We observe that larger
models (72B) consistently outperform smaller models (7B)
across most classifiers and settings, showcasing the benefit
of increased model capacity for capturing verbalized fea-
tures. We also find that the inter-class difference features
(yaif ) are generally more effective than commonality fea-
ture. However, we discover a consistent trend where the
combined features (via concatenation) can yield the best
overall performance (the ‘both’ rows). For different feature
mapping models, LLaVA outperforms CLIP in most scenar-
ios, showcasing the advantage of using generative VLMs to
determine the presence of a certain feature. In terms of clas-
sifier, we observe that logistic regression, random forest and
MLP classifiers perform the best. On the other hand, we no-
tice that decision tree is prone to overfitting on the training
set since we only have few-shot samples, while Naive Bayes
also struggle to perform well since the resulting representa-
tions are high-dimensional.

B.3. Mini-ImageNet

In the main paper, to evaluate how well the proposed
method learn when the objects are not well-presented in
the pre-training datasets of the VLMs, we conduct exper-
iments on the iNaturalist and Kiki-Kouba datasets for fine-
grained and novel object recognition. To complement these

Ours F.Liu[30] M. Liu [31] Chen [9]
94.27 £ 0.05 98.24 81.14 £ 0.15 72.31+0.40

Table 11. Top-1 Accuracy on mini-ImageNet under the 5-way 1-
shot setting. Baseline results are sourced from the original paper.

LLaVA 10 50 200 LLaVA 10 50 200
w/SFT 439 652 802 w/VRL 621 80.5 862

Table 12. Scaling LLaVA with SFT vs. VRL from 10 to 200 (full
dataset) training images per class.

experiments and provide insight into its performance on a
more general few-shot benchmark, we further evaluate our
method on the mini-ImageNet dataset under the 5-way 1-
shot setting across 1,000 testing episodes. We report the
results in Table 11.

From the table one can see that our method is compa-
rable to the recent baselines that adapt VLMs or LLMs for
few-shot image classification. Notably, these baselines typ-
ically require data from training episodes to perform meta-
training or instruction fine-tuning, while our method di-
rectly adapts during test time without further training.

B.4. Scalability Analysis

Scaling training data. We evaluate the proposed VRL
framework on progressively larger training sets and summa-
rize the results in Table 12. Our method consistently out-
performs standard supervised fine-tuning—even when us-
ing the full dataset (200 images per class). We attribute
this advantage to the fact that, unlike the random weight
initialization in SFT, verbalized queries provide a strong
prior that guides the model toward learning task-relevant



Acc. Rel. Rel. (%)

Lichen 71.6 18.0 90
Wrasse 72.0 20.0 100
Wilde Rye 74.0 20.0 100
Manzanita 56.0 17.0 85
Bulrush 66.0 18.0 90
Average 67.9 18.6 93

Table 13. Human Study of the learned verbalized features on iNat-
uralist. Acc. denotes testing classification accuracy, while Rel.
represents human evaluation scores (maximum 20).

features. Importantly, we find that exhaustive pairwise enu-
meration is not required for these gains: sampling only 100
image pairs (out of 19,900 possible) still delivers substantial
improvements. For feature extraction, we adopt the CLIP-
based VRL variant (see L269-274), which enables efficient
feature mapping without compromising performance.

Scaling object classes. We evaluate scalability on a large
iNaturalist subset with 200 families, each with 5 species
(1000 species) and 10 images per species. For family-level
classification, which is more heterogeneous, CLIP achieves
73%, while our Fy;r¢ + Feomm features reach 83%. Com-
bining them further improves performance to 90%. Sim-
ilar trends are observed in the general recognition dataset
minilmageNet (Table 12, Appendix), where VRL achieves
94.2%. It suggests that general VLM features can han-
dle coarse, heterogeneous distinctions well, and since VRL
builds on top of them, it naturally inherits this capability
while providing additional gains by extracting finer, task-
relevant features. Notably, in this experiment, we sample
only 1 image pair per class combination, yet still observe
substantial improvements.

B.5. Human Study on Verbalized Features

To verify the quality of the learned verbalized features, we
sample 20 features per super class on iNaturalist, resulting
in 100 features for human evaluation. We ask the testers to
evaluate whether the generated features are faithful to the
image and relevant to the target objects. For example, if a
feature accurately describes the image but pertains only to
the background (e.g., “the sky is blue”), it receives a score
of 0. We report the results in Table 13. From the results one
can see that around 93% of the features were faithful to the
image and useful for classification, with a 0.84 correlation
between this rate and final accuracy. In addition, we observe
that the learned classifier tend to assign lower weights for
those irrelevant or hallucinated features, thereby reducing
their impact on final predictions.



