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Outline
In this Supplementary Material, we first provide elab-

orated implementation details in Section 1. We also pro-
vide more details regarding our self-curated TransitBench
in Section 2. Next, we incorporate the dynamic video ex-
amples into an project page and provide a detailed summary
in Section 3. In Section 4, we provide more quantitative re-
sults Furthermore, we show visual comparisons of ablation
studies in Section 5. We also present time complexity anal-
ysis regarding inference time in Section 6. Finally, we con-
clude with limitations and discussion of VTG in Section 7
and Section 8, respectively.

1. More Implementation Details

Hyper-parameters. To maximize the retention of ap-
pearance and motion priors inherent in the image-to-video
diffusion backbones, we only perform the interpolated
latent injection at early denoising steps (i.e., less than 5
steps). For the three interpolation parameters (i.e., λnoise,
λlora, and λtext), we adopt linearly increasing coefficients
by default. This is intuitive because the closer the generated
frame is to the initial frame, the more it should resemble
the content of the initial frame, and vice versa.

Inference. The inference script is built upon the codebase
of DynamiCrafter [4]. To align with previous studies, we
apply classifier-free guidance with a guidance scale set to
7.5. In all our experiments, the resolution and frame count
of the generated videos strictly follow the benchmark spec-
ifications. For example, MorphBench requires 16 frames of
512× 512 resolution video. All experiments are conducted
on 1 NVIDIA A100-80GB GPU using PyTorch, with a
batch size of 1. The sampling process of VTG takes ∼50s.

2. More details on TransitBench

TransitBench includes two subsets for concept blending and
scene transition, respectively. Each subset contains 100 im-
age pairs and each image pair constitutes the first and last
frames of a transition video. All image pairs are manually
collected and captioned from Google Images (under CC BY
license). They are resized to 512 × 512. For data diversity,
the categories of the image pairs in each subset are unique,
ensuring that no transitions are repeated. The FPS does not
affect evaluation since our model inherently supports dif-
ferent frame counts (e.g., 8, 32, 64) without extra tuning.
We encourage readers to explore our project page, espe-
cially Concept Blending and Scene Transition sections, for

a visual examination of the content and quality of Transit-
Bench.

3. More Qualitative Results
We kindly refer readers to our project page to examine the
dynamic video comparisons. We compared the visual qual-
ity of our proposed VTG with five existing methods, includ-
ing DiffMorpher [5], TVG [6], SEINE [1], DynamiCrafter
[4], and Generative Inbetweening [3]. For each transition
task, five examples are given. We also provide two input
frames along with a pair of transition captions for each ex-
ample. In addition, we include several challenging cases re-
garding Motion Prediction and Scene Transition, which in-
volve significant variations in motion or substantial changes
in scenes between the initial and final input frames. We also
summarize the successful and failed motion patterns at the
bottom of the page.

4. More Quantitative Results
As shown in Table 1 and Table 2, our method outper-
forms other baselines in all the four metrics for both public
benchmarks and TransitBench. In particular, our approach
achieves significantly lower Fidelity, showcasing the better
consistency between the generated frames and input frames.
Note that, unlike existing methods that are specifically de-
signed for one task (e.g., DiffMorpher for Object Morph-
ing), VTG was designed to perform well across all the four
transition tasks

5. Ablation Studies
Quantitative Ablation. As shown in Table 3, introducing
LERP slightly reduced Similarity and increased Fidelity,
indicating limited benefits. However, switching to SLERP
significantly enhanced both Smoothness and Fidelity,
showing the effectiveness of our noise initialization strat-
egy. Adding LoRA interpolation further boosted Similarity,
highlighting its capability to capture better semantics in the
input frames. Incorporating BMP improved Smoothness
substantially, demonstrating better motion consistency, al-
though Alignment slightly decreased. Finally, introducing
RAR achieved the best overall performance, with the high-
est Similarity (0.8705) and Smoothness (0.9876), while
significantly reducing Fidelity (118.35). These results
confirm that our method effectively enhances generation
quality over a wide array of transition tasks.

Qualitative Ablation. As observed in Figure 1, introducing
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Method Object Morphing Motion Prediction

Similarity (↑) Fidelity (↓) Smoothness (↑) Alignment (↑) Similarity (↑) Fidelity (↓) Smoothness (↑) Alignment (↑)

DiffMorpher [5] 0.8467 54.695 0.8912 0.2535 0.7809 499.97 0.8801 0.2579
Generative Inbetweening [3] 0.6080 70.496 0.8809 0.2412 0.7573 414.83 0.8976 0.2418
TVG [6] 0.8389 50.512 0.9678 0.2708 0.8750 451.10 0.9765 0.2664
SEINE [1] 0.7389 60.828 0.9675 0.2665 0.8483 447.25 0.9620 0.2634
DynamiCrafter [4] 0.7707 54.285 0.9569 0.2538 0.8609 369.19 0.9715 0.2678
VTG (Ours) 0.8752 48.071 0.9888 0.2788 0.8963 292.54 0.9890 0.2701

Table 1. Quantitative comparisons on object morphing and motion prediction. We utilize two public datasets, MorphBench [5] and
UCF101-7 [2], to evaluate the performance of each method.

Method Concept Blending Scene Transition

Similarity (↑) Fidelity (↓) Smoothness (↑) Alignment (↑) Similarity (↑) Fidelity (↓) Smoothness (↑) Alignment (↑)

DiffMorpher [5] 0.8174 72.828 0.8954 0.2635 0.7934 86.151 0.8723 0.2624
Generative Inbetweening [3] 0.6320 86.599 0.8802 0.2428 0.7658 94.285 0.8815 0.2675
TVG [6] 0.7315 80.805 0.9605 0.2534 0.7740 80.530 0.9675 0.2726
SEINE [1] 0.7880 75.243 0.9678 0.2519 0.7954 79.833 0.9720 0.2716
DynamiCrafter [4] 0.8218 66.298 0.9738 0.2665 0.7993 74.253 0.9754 0.2745
VTG (Ours) 0.8517 63.105 0.9845 0.2717 0.8580 69.689 0.9880 0.2763

Table 2. Quantitative comparisons on concept blending and scene transition. Utilizing self-curated TransitBench, we evaluate the
performance of each method to demonstrate their effectiveness.

Method Similarity (↑) Fidelity (↓) Smoothness (↑) Alignment (↑)

Baseline 0.8132 141.01 0.9694 0.2670
Baseline+LERP 0.7985 150.75 0.9231 0.2615
Baseline+SLERP 0.8050 125.42 0.9765 0.2669
Baseline+SLERP+LoRA 0.8601 137.92 0.9440 0.2672
Baseline+SLERP+LoRA+BMP 0.8355 160.89 0.9810 0.2527
VTG (Ours) 0.8705 118.35 0.9876 0.2753

Table 3. Ablation study on different proposed components. The
results are averaged over four tasks. Best viewed when zoomed in.

interpolated noises to initialize the video diffusion model
effectively alleviates the issue of abrupt content changes.
Consequently, the intermediate generated frames become
more coherent and reasonable. Furthermore, the SLERP
significantly outperforms LERP, as it captures richer seman-
tic information. Nonetheless, without LoRA interpolation,
the model still struggles to capture the finest semantic de-
tails. This highlights the rationale behind our approach of
applying both SLERP and LoRA interpolation on top of the
baseline.

The effectiveness of our proposed frame-aware text in-
terpolation is demonstrated in Figure 2. Given two distinct
concepts, adopting text interpolation prevents abrupt con-
tent changes and avoids generating ambiguous mixed-state
video frames.

Figure 3 illustrates empirical evidence for the effective-
ness of our proposed bidirectional motion prediction (BMP)
and representation alignment regularization (RAR). Specifi-
cally, when the start and end frames of a natural motion path
are swapped, the generated transition video often exhibits a
noticeable quality gap compared to the original. BMP en-
ables the video diffusion model to accurately predict and

fuse both forward and backward motion paths, allowing
VTG to handle a wider range of motion prediction inputs
with greater naturalness and robustness. Furthermore, in-
corporating RAR during fine-tuning allows the model to ef-
fectively utilize powerful representation models to capture
finer semantics (e.g., a person’s bangs). Another notewor-
thy observation is that the changes in background bright-
ness appear more natural, contributing to smoother transi-
tions and ultimately enhancing the fidelity of the generated
transition videos.
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Figure 1. Qualitative results regarding the effectiveness of latent
interpolation, spherical linear interpolation (SLERP) over the lin-
ear interpolation (LERP), as well as LoRA interpolation.
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Figure 2. Qualitative results regarding the effectiveness of text
interpolation.

6. Time Complexity Analysis

Method Frame Time (↓)

DiffMorpher [5] 16 1m18s
Generative Inbetweening [3] 16 10m17s
VTG (Ours) 16 1m25s

DiffMorpher [5] 32 2m29s
Generative Inbetweening [3] 32 19m44s
VTG (Ours) 32 2m36s

Table 4. Inference time comparison for different methods.

We compared our approach with the other two training-
based methods (i.e., DiffMorpher and Generative Inbe-
tweening). As seen in Table 4, DiffMorpher also re-
quires LoRA training during inference, resulting in compa-
rable runtime. In contrast, Generative Inbetweening (SVD-
based) require over ten minutes for inference. To sum-
marize, the LoRA training during VTG’s inference stage
does not introduce significant computational overhead, tak-
ing just over a minute for 16-frame video generation.

7. Limitations

VTG leverages existing image-to-video diffusion models as
priors. It thus faces similar limitations as the diffusion back-
bones. One typical scenario that VTG tends to struggle is
when the involved motion is very fast with complex pat-
terns. This can be observed in Figure 4, where some inter-
mediate frame fails to capture the moving car. We also sum-
marize successful and failed motion patterns in our project
page (last section). We will investigate how to mitigate this
limitation in our future work.

8. Discussion
Adaptation to other diffusion backbones. Our proposed
method can be adapted to the Stable Video Diffusion (SVD)
architecture and extended for 25-frame video generation.

GPU Requirements. Our base model requires approxi-
mately 12.8 GB of GPU memory when running on a single
24 GB VRAM GPU (e.g., NVIDIA RTX 3090/4090).

More clarification on Concept Blending and Scene
Transition. Concept Blending aims to blend two con-
ceptually different objects for tasks like image attribute
modification, data augmentation, and video generation.
Scene Transition encompasses the evolution of the same
subject across different scenes (e.g., Fig. 1-(d)), changes
in the state of the same conceptual entity (e.g., Fig. 4),
and the transformation of the same entity across different
domains (e.g., a cartoon-style balloon transitioning into a
cyberpunk-style balloon).
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Figure 3. Qualitative results regarding the effectiveness of proposed bidirectional motion prediction (BMP) and representation alignment
regularization (RAR).

Figure 4. A sequence of generated intermediate frames via
VTG. Our approach tends to fail when the two input frames (i.e.,
the leftmost and the rightmost) involve large and complex motion.
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