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Figure 1. The visualization of results on the Flicker1024 dataset.
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Figure 2. The visualization of results. We use two kinds of col-
ormap to visualize the disparity map.

The training and testing codes for all experiments, including
the ablation study, are available in our project. For repro-
ducibility, we strongly recommend referring to our project.

1. Visualization On Flicker1024

We present visualization results demonstrating the general-
ization capability of our model from the synthetic Scene-
Flow dataset to the real-world Flickr1024 dataset [11]. As
shown in Figure 1, our model performs robustly across di-
verse scenarios, including large outdoor and indoor scenes,
thin and small objects, strong lighting interference and low-
light conditions, as well as challenging materials such as
glass windows, walls, and bottles.

2. Intuition behind Monocular Depth Model

We choose DepthAnything v2 [13] over Marigold [3] be-
cause of the superior continuity of its depth maps. As shown
in Figure 2, DepthAnything v2 provides depth maps with
better continuity than Marigold, especially in fine-grained
regions. The depth maps from Marigold contain consider-
able noise, while those from DepthAnything v2 are much
cleaner.

3. More Results on Booster
We provide additional results on the Booster dataset across
various material types. From class 0 to 3, the materials be-
come increasingly transparent and/or specular. As shown in
Tables 1 and 2, our method outperforms state-of-the-art ap-
proaches on transparent and/or specular objects (classes 1
to 3), while achieving comparable results in normal regions
(class 0). The normal regions of the Booster dataset mainly
consist of regular objects, flat surfaces, or highly textured
areas. Consequently, NerfStereo, which incorporates ad-
ditional stereo data, performs particularly well in these re-
gions. This indicates that stereo matching effectively cap-
tures fine-grained details, whereas monocular depth estima-
tion excels in perceiving coarse shapes. As illustrated in
Figures 3 and 4, binocular disparity provides greater de-
tail compared to monocular depth. Our method disentan-
gles monocular depth and binocular disparity, allowing the
model to leverage both monocular and stereo data, and ex-
plore the fusion of monocular priors effectively.

4. Additional Training Data
We evaluate the scalability of our model by incorporating
additional training data from the TranScene dataset [6], a
synthetic dataset specifically designed for multi-label trans-
parent scenes. In our experiments, we use labels with
the largest disparity in transparent regions. It should be
noted that, this time, our model is trained end-to-end us-
ing weights pretrained on the SceneFlow dataset, without
using any multi-stage training strategy. As shown in Tables
3 and 4, incorporating the additional data leads to consis-
tent performance improvements across all evaluated met-
rics, with particularly notable gains in transparent regions.
Furthermore, our model’s performance on common scenes
(e.g., non-transparent regions) not only remains stable but
also shows slight improvement. These results highlight the
scalability potential of our model when augmented with ad-
ditional large data.

5. More Analysis about Memory
We also compare our model to state-of-the-art methods in
terms of memory consumption across different resolutions.
To ensure a fair comparison of backbones during inference,
we exclude the feature encoder module when evaluating
each model’s memory consumption. Notably, the memory
consumption of IGEV becomes extremely high on the A40
GPU as the maximum disparity range increases. We sus-
pect this may be a bug; therefore, we used a borrowed 4090
GPU for evaluations under the first four resolutions, while
the evaluation under the last resolution was conducted on
the A40 GPU.

As shown in Table 5, our method, along with RAFT-
Stereo [5], maintains a slower growth rate in memory con-



Method
Additional
Data/Aug

Booster
Class 0 Class 1

EPE bad 2.0 bad 3.0 bad 5.0 EPE bad 2.0 bad 3.0 bad 5.0
Mocha-Stereo 192[1] 1.30 6.93 5.54 4.18 2.91 23.05 17.67 13.45
Mocha-Stereo 320[1] 1.20 6.18 4.84 3.53 2.88 22.83 17.34 12.98

ELFNet [7] 2.97 14.08 11.38 8.80 5.67 24.68 19.00 14.42
Selective-RAFT [10] 1.35 8.06 6.01 4.01 3.37 27.37 21.87 17.19

Selective-IGEV 192[10] 1.46 8.03 6.19 4.66 3.61 25.57 20.05 15.93
Selective-IGEV 320[10] 1.31 7.27 5.39 3.81 3.51 25.05 19.39 15.18

IGEV 192[12] 1.17 6.67 4.84 3.46 3.76 25.46 20.26 16.39
IGEV 320[12] 1.00 6.07 4.37 2.82 3.60 24.69 19.46 15.70

NMRF [2] 2.76 17.43 13.21 9.51 4.60 32.81 26.08 19.84
NerfStereo [8] ✓ 0.73 4.07 2.55 1.47 2.41 18.67 13.92 10.56

RAFTstereo [5] 1.14 5.84 4.39 3.08 3.66 25.34 19.35 14.37
RAFT-Stereo + ME 0.96 6.57 5.24 3.93 1.81 13.68 8.77 5.98

Ours 0.79 5.90 4.57 3.17 1.53 12.67 7.80 4.88

Table 1. Generalization from SceneFlow dataset to Booster dataset in quarter resolution and balanced set. ME represents our monocular
encoder module. All results are evaluated in the same metrics and settings. The 192 and 320 represent the maximum disparity range used
in each model.

Method
Additional
Data/Aug

Booster
Class 2 Class 3

EPE bad 2.0 bad 3.0 bad 5.0 EPE bad 2.0 bad 3.0 bad 5.0
Mocha-Stereo 192[1] 15.68 53.56 46.23 37.77 9.45 66.44 57.96 45.73
Mocha-Stereo 320[1] 15.05 53.88 46.63 37.62 9.21 65.88 57.30 44.65

ELFNet [7] 22.74 78.89 74.81 69.70 9.03 72.07 62.73 49.82
Selective-RAFT [10] 16.12 55.66 49.87 43.04 10.34 69.84 61.64 49.55

Selective-IGEV 192[10] 20.41 57.55 49.78 42.86 9.50 66.85 58.9 47.15
Selective-IGEV 320[10] 19.81 57.35 49.27 42.10 9.29 66.02 57.91 45.86

IGEV 192[12] 18.55 54.64 46.45 37.79 10.00 68.96 61.14 49.51
IGEV 320[12] 18.00 54.50 46.05 37.72 9.74 68.55 60.49 48.22

NMRF [2] 17.36 56.34 48.33 38.18 10.36 70.92 60.93 47.16
NerfStereo [8] ✓ 17.92 45.67 40.39 35.19 8.88 62.67 53.35 41.79

RAFTstereo [5] 18.58 54.00 47.52 40.44 9.79 67.69 59.31 47.40
RAFT-Stereo + ME 5.16 24.38 19.01 14.58 8.97 64.84 56.05 43.95

Ours 5.32 23.34 17.62 13.50 7.93 59.83 50.36 38.44

Table 2. Generalization from SceneFlow dataset to Booster dataset in quarter resolution and balanced set. ME represents our monocular
encoder module. All results are evaluated in the same metrics and settings. The 192 and 320 represent the maximum disparity range used
in each model.

sumption compared to IGEV [12], Selective IGEV [10], and
Mocha [1]. Compared to RAFTStereo, our method exhibits
a similar memory consumption increase across resolutions
due to the resizing operation required by DepthAnything v2.

6. More Visualization
We provide additional visualizations of generalized stereo
matching in Figures 5, 6, 7, 8, and 9. The visualizations

span a variety of environments, ranging from open out-
door scenes (e.g., driving scenarios), to semi-open outdoor
scenes (e.g., playgrounds), and to enclosed indoor scenes
(e.g., rooms, tables). The results demonstrate that our
method generalizes effectively to the wild world, achiev-
ing strong performance even when trained only on a limited
amount of synthetic stereo data.



Metric ALL Trans NoTrans
Ours Ours+TranScene Ours Ours+TranScene Ours Ours+TranScene

EPE 2.26 1.24 7.93 5.67 1.52 0.75
RMSE 5.60 4.19 11.03 8.42 3.93 3.07

2px 11.02 7.91 59.83 46.78 6.98 4.77
3px 8.59 5.97 50.36 38.55 4.97 3.23
5px 6.60 4.52 38.44 28.65 3.64 2.29
6px 6.00 4.08 33.87 25.41 3.27 2.01
8px 5.35 3.44 27.56 21.30 2.89 1.59

Table 3. Generalization from the SceneFlow dataset to the Booster dataset in quarter resolution and balanced set. ‘All’, ‘Trans’, and
‘NonTrans’ represent all regions, transparent regions, and nontransparent regions, respectively.

Metric Class 0 Class 1 Class 2 Class 3
Ours Ours+TranScene Ours Ours+TranScene Ours Ours+TranScene Ours Ours+TranScene

EPE 0.79 0.75 1.53 1.40 5.32 1.62 7.93 5.67
RMSE 3.02 2.99 4.70 4.74 6.39 2.26 11.03 8.42

2px 5.90 5.15 12.67 9.17 23.34 13.51 59.83 46.78
3px 4.57 4.08 7.80 5.63 17.62 10.23 50.36 38.55
5px 3.17 3.00 4.88 3.80 13.50 7.40 38.44 28.65
6px 2.58 2.59 3.96 3.37 12.80 6.50 33.87 25.41
8px 1.45 1.73 3.14 2.86 12.15 4.93 27.56 21.30

Table 4. Generalization from the SceneFlow dataset to the Booster dataset in various regions.

7. Ablation Study
7.1. More Analysis of Backbone
In addition to replacing the context network with the pre-
trained DepthAnything v2 [13], we also experimented with
replacing the feature extractor for cost volume construc-
tion using DepthAnything v2 [13] and MASt3R [4, 9]. As
shown in Table 6, the results become worse after replac-
ing the feature extractor for cost volume construction with
DepthAnything v2 or MASt3R. Moreover, a bug with the
A40 GPU causes memory issues when converting the alter-
nate correlation function from dot product to Euclidean dis-
tance during training. Therefore, the model with MASt3R
was trained using the original correlation function with dot
product, where additional learnable convolution layers are
further used after MASt3R for feature extraction.

7.2. More Analysis of Iterative Local Fusion
We provide additional visualizations of the intermediate re-
sults from the iterative local fusion process in Figures 10,
11, 12, 13, 14, 15, 16, and 17. As the iterations progress,
the ordering maps generated from binocular disparity grad-
ually become smoother. The convolution layers learn the
differences between ordering maps generated from binoc-
ular disparity and monocular depth, allowing the guidance
to focus more effectively on non-smooth regions, thereby
significantly affecting disparity update.

7.3. More Analysis of Components in Global Fusion
We present more visualization for the intermediate results
of global fusion in Figure 10, 11, 12, 13, 14, 15, 16, and 17.

The visualization shows that the registration of monocular
depth is different for each pixel, particularly on different
objects. Since the monocular depth from DepthAnything
is scale ambiguity but not absolute depth before registra-
tion, the visualization of it is not alinged to the ground truth
range, other wise its visualization is almost a single color.
The implicit learned confidence also filters out the noise of
monocular depth, especially in Figure 4.

We provide additional visualizations of the intermediate
results from global fusion in Figures 10, 11, 12, 13, 14, 15,
16, and 17. These visualizations illustrate the varying reg-
istration of monocular depth across individual pixels, par-
ticularly across different objects. Given that the monocular
depth obtained from DepthAnything is scale ambiguous and
does not represent absolute depth before registration, we do
not align it with the ground truth range in visualization; oth-
erwise, it would appear almost uniformly as a single color.
The implicitly learned confidence also effectively filters out
noise in the monocular depth as demonstrated in Figure 4.

8. Future Work Discussion

We present failure cases in Figures 18 and 19. In the first
failure case, our method is confused by the glass door and
glass window, where both the transparent surfaces and the
behind scene are significant. Unlike simple transparent ob-
jects (e.g., a glass bottle), transparent scenes raise a new
challenge for robotics, as they need to perceive both the
transparent surface and the scene behind it. Failure to do
so may cause robots to get stuck, for instance, when try-
ing to reach an apple behind a glass window. If the robot



750×2484 1125×3726 1500×4968 1688×5589 1875×6210
RAFTStereo reg [5] 2268.35 6023.82 10795.02 14299.5 19666.78
RAFTStereo alt [5] 1715.8 4151.8 6466.7 8157.96 11177.66

IGEV 384 [12] 2816.46 7290.82 14484.61 18810.14 -
IGEV 640 [12] 3167.46 8475.43 17366.83 - -

Selective IGEV 384 [10] 2960.34 7608.44 15035.55 19505.5 -
Selective IGEV 640 [10] 3311.84 8793.07 18701.57 - -

Mocha-Stereo 384 [1] 5525.56 12986.73 24665.95 - -
Mocha-Stereo 640 [1] 6136.18 15056.66 29476.45 - -

ours reg 5031.07 8609.63 14088.98 17782.53 22279.12
ours alt 3452.42 6745.23 9761.22 11641.82 13790.82

Table 5. Memory comparison across different resolutions. We evaluate the memory consumption of each model, excluding the feature
encoder module, to ensure a fair comparison of backbones during inference. reg: pre-computation of the entire cost volume, allowing for
look-up operations at each iteration, alt: dynamically computing a thin cost volume at each iteration. 384/640: the maximum disparity
range used for the resolution of 750×2484. ’-’: out of memory in our GPU.

Exp
Middlebury (H)

epe bad 2.0
Baseline + FE-DepthAnything 3.26±0.03 28.73±0.28

Baseline + FE-MASt3R 4.41±0.40 26.83±0.57
Baseline + ME + ILF + GF 1.15±0.01 8.35±0.04

Table 6. The effectiveness of each module. Baseline: RAFT-
Stereo, ME: our monocular encoder, ILF: iterative local fusion,
GF: our global fusion. FE-DepthAnything: replacing the original
feature extractor with DepthANything v2. FE-MASt3R: replacing
the original feature extractor with MASt3R.

perceives only the glass window, it will miss the apple en-
tirely, while perceiving only the apple means the glass acts
as an unrecognized and insurmountable barrier. Therefore,
a novel representation for depth estimation is necessary to
allow for multiple depths at a single pixel.

In the second failure case, our method is confused by the
very close black screen and the very dark tunnel. In these
scenes, registering monocular depth with binocular dispar-
ity is highly challenging due to excessive and concentrated
noise in the disparity, along with pixel-wise differences in
monocular depth registration, particularly across different
objects. Consequently, information from video streams and
segmentation becomes essential, like video stereo matching
or simultaneously learning segmentation.
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Figure 3. The visualization of binocular disparity and monocular depth. The regions highlighted with gray boxes demonstrate that stereo
matching excels at capturing fine-grained details, whereas monocular depth estimation performs better in perceiving overall shapes. The
mono depth from DepthAnything is scale ambiguity but not absolute depth before registration.



Figure 4. The visualization of binocular disparity and monocular depth. The regions highlighted with gray boxes demonstrate that stereo
matching excels at capturing fine-grained details, whereas monocular depth estimation performs better in perceiving overall shapes. The
mono depth from DepthAnything is scale ambiguity but not absolute depth before registration.



Figure 5. The visualization for generalized stereo matching.



Figure 6. The visualization for generalized stereo matching.



Figure 7. The visualization for generalized stereo matching.



Figure 8. The visualization for generalized stereo matching.



Figure 9. The visualization for generalized stereo matching.



Figure 10. The visualization of intermediate results. itr: the current iteration. cz, cr, cq: context used in GRU. scale: scale 0 ∼ 2
represents resolution from high to low.



Figure 11. The visualization of intermediate results. itr: the current iteration. cz, cr, cq: context used in GRU. scale: scale 0 ∼ 2
represents resolution from high to low.



Figure 12. The visualization of intermediate results. itr: the current iteration. cz, cr, cq: context used in GRU. scale: scale 0 ∼ 2
represents resolution from high to low.



Figure 13. The visualization of intermediate results. itr: the current iteration. cz, cr, cq: context used in GRU. scale: scale 0 ∼ 2
represents resolution from high to low.



Figure 14. The visualization of intermediate results. itr: the current iteration. cz, cr, cq: context used in GRU. scale: scale 0 ∼ 2
represents resolution from high to low.



Figure 15. The visualization of intermediate results. itr: the current iteration. cz, cr, cq: context used in GRU. scale: scale 0 ∼ 2
represents resolution from high to low.



Figure 16. The visualization of intermediate results. itr: the current iteration. cz, cr, cq: context used in GRU. scale: scale 0 ∼ 2
represents resolution from high to low.

Figure 17. The visualization of intermediate results. itr: the current iteration. cz, cr, cq: context used in GRU. scale: scale 0 ∼ 2
represents resolution from high to low.



Figure 18. The visualization for failure case analysis.



Figure 19. The visualization for failure case analysis.
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